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Geostatistics-based estimators, i.e. ordinary kriging and simple kriging, are state-of-the-art estimation 

techniques widely used in the mining industry. However, the estimation result of kriging techniques is not 

able to cope with the well-known uncertainty of geological attributes in mineralization deposits. Moreover, 

the smoothing effect of kriging algorithms has led to over/under estimation in many circumstances. To 

overcome these drawbacks, the deterministic estimation result of kriging is usually followed by stochastic 

results provided by stochastic simulation. In this paper, the application of ordinary kriging and stochastic 

simulation are performed to build the resource model together with the uncertainty assessment of the 

Sinquyen copper mine. 
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INTRODUCTION 

In the modern mining industry, all mining 

projects are developed based under a block model 

in a three-dimensional space (hereafter called 

block model). The objective of block modeling is 

to intuitively represent the real but unknown 

geological conditions of the mineralization area. 

In the geological block model, each of the unit 

blocks contains geological attributes i.e., grades 

of different metals and minerals comprising the 

deposit, and their specific gravity, tonnage, and 

lithology. Once the geological block model is 

built, economic parameters such as mining and 

processing cost and commodity price will be 

applied to convert that geological block model 

into an economic block model, which forms the 

platform for the mine planning process. The 

source of information for the estimation process 

mainly comes from a limited number of 

exploratory boreholes, which is obviously not 

available at all blocks. The process that 

interpolates values of unsampled blocks from 

nearby boreholes is called ore resource 

estimation. Ore resource estimation is a 

complicated task in terms of algorithms, the large 

amount of data and computation cost.  

To date, many estimation methods have 

been developed to tackle this challenge. One of 

the first approaches is to assign the value of the 

nearest sample point to an unknown point, called 

the nearest neighbor. The nearest neighbor 

methodology is illustrated in Fig. 1. 

 

 

 
 

Fig. 1. Illustration of nearest neighbor method 
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Inverse distance is a more advanced 

interpolation technique, which is capable of 

considering the impact of distance between 

different sample points to the estimating point. 

The methodology of this approach based on the 

assumption that those points have the same 

distance to the unsampled point will have the 

same similarity. The similarity will decrease 

gradually as the distance increases. With this 

assumption, the weights of different sample 

points to the estimated point will be different, 

and only depend on the distance. 

Due to the explicit interpolating 

mechanism, nearest neighbor and inverse 

distance are classified as deterministic 

methods. These methods are quite simple and 

easy to implement in terms of algorithm and 

computational intensity. The result is 

acceptable when the variation of dataset is not 

complicated or when the requirement of 

estimation quality is not too high, e.g. 

estimating attribute grades of waste blocks.  

Danie Krige (1951), a mining engineer 

working in a gold mine in South Africa, 

suggested a new statistical estimation method 

where the gold content of blocks not only 

depends on the attribute inside but also the 

surrounding spatial information. This new idea 

was subsequently developed as a brand new 

scientific subject called geostatistics. The 

family of average estimation algorithms is 

named kriging, after the pioneering work of 

Danie Krige. In this approach, the spatial 

features of the survey area are quantified into a 

calculating equation, e.g., anisotropy, 

correlation between different variables, or 

spatial continuity. Kriging algorithms release 

estimate results with the smallest estimation 

variance constraint to an unbiased condition. 

Among the kriging algorithms, regular kriging 

is considered the most popular due to its simple 

application.  

Generally speaking, the estimation 

methods, include kriging algorithms, aim to 

obtain a single “best” estimation result and they 

are not capable of accessing the associated 

uncertainty of the estimation. Dimitrakopoulos 

et al. (2002) proposed an application of 

stochastic simulation in resource estimation. 

Differing from kriging methods, the result of 

stochastic simulation is a series of probable 

possibilities (or realizations) that a mineral 

deposit may have; therefore, this technique can 

access the uncertainty associated with the 

resource estimation. 

 

 

 
Fig. 2. Illustration of the application of estimation and simulation
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Fig. 3. Illustration of NPV distribution of a mining project 

When it comes to mine planning, instead of 

using a single ore body model to release a unique 

project NPV as a traditional method, applying 

stochastic simulation will result in different 

schemes, from the most optimistic to the most 

pessimistic a mining project may experience. This 

new approach, so-called stochastic mine 

planning, has opened a new dimension for the 

mining industry. The differences of traditional 

and stochastic mine planning are illustrated in 

Fig. 2 and 3. 

In this paper, the methodology of ordinary 

kriging (OK) and sequential Gaussian simulation 

(SGS) are reviewed in Section 2. Section 3 is 

devoted to a large-scale case study with results 

analysis and conclusions drawn in Section 4. 

METHODOLOGY REVIEW 

Ordinary Kriging 

The general methodology of kriging 

interpolators is reviewed from the work of 

Goovaerts (1997).  

Let’s define study area A with a dataset 

including n sample points: 

, 1,2,..., ,Z u n  

where Z  is the continuous attribute that is being 

surveyed, such as metal content, mineral density, 

porosity ..., u  is the location of the corresponding 

n  sample point.  

The problem is estimating the value of *Z u  

at any unsampled point belonging to A.  

The estimating value at unsampled point u by 

kriging algorithm is defined as: 

*

1

,

n u

Z u m u u Z u m u  (1) 

where: 
*Z u   Estimating value of unsampled 

point; 

Z u   Value of sample point ; 

u   Weight of sample point α to 

estimating unsampled point; 

m u   Local arithmetic mean; 

m u   Arithmetic mean of study area. 

Estimation error is defined as: 

2 * .E u Var Z u Z u  

All kriging methods aim to minimize 

estimation error )(2 uE  by setting the unbiased 

condition: 

* 0E Z u Z u : Expected value of 

estimated value and real value (average estimated 

value) is 0. 

According to the equation (1), these 
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parameters Z u , m u  are constant, so the 

difference between kriging methods basically 

concerns the issue of how to define local arithmetic 

m(u) and weight u  of sample points. 

With ordinary kriging, this method is named 

“ordinary” because it is based on the assumption 

that local mean m u  is constant and cannot be 

determined, and so can be removed from the 

equation. This makes the calculation very 

convenient to apply. This method even has the 

nickname “BLUE”: Best Linear Unbiased 

Estimator. 

( ) ( )
*

1 1

( ) ( ) 1 ( ) ( ),
n u n u

OK OKZ u u Z u u m u  

where 
*Z u  − Estimating value of unsampled 

point; 

( )Z u  − Value of sample point α; 

( )OK u  − Weight of sample point α by OK 

method; 

( )m u  − Local arithmetic mean. 

Local mean ( )m u  is removed from the 

equation by the assumption that the sum of 

weights is 1: 

( )
OK

1

( ) 1
n u

u . 

Therefore: 

( )
*

1

( ) ( )
n u

OKZ u u Z u . 

Sequential Gaussian simulation (SGS) 

SGS is one of the simplest and most 

common geostatistical simulations which relies 

on the normal (Gaussian) distribution of input 

data to have a zero mean and unit variance 

(Deutsch & Journel, 1998). This feature provides 

an extremely analytical simplicity for simulation 

process. Normally, the distribution of most raw 

datasets on earth is not normal; therefore,  

a normal transformation needs to be implemented 

before simulation.  

SGS is a sequential simulation approach, 

which means that the simulation procedure of a 

node is conditional on all neighboring data inside 

the search radius, including both original data and 

previously simulated nodes. A random path will 

be set to ensure that all nodes are simulated 

randomly and sequentially. 

Steps of SGS: 

1) Normal transformation of original data; 

2) Draw a random path to visit every node; 

3) Withdraw a random value to a node from 

a cumulative distribution function generated from 

data within the search radius, assign this value to 

that node as the simulated value;   

4) Repeat step 3 until all nodes, except 

original nodes, have been simulated; 

5) Back transform the simulated values into 

their original form; 

6) Check the result: reproduce and check 

the histogram and variogram of realizations to 

target features.  

Repeat step 2 to step 6 to generate other 

realizations. 

CASE STUDY 

In the case study, the OK and SGS were 

applied to the Sinquyen copper deposit in 

Vietnam. The block model consists  

of 802,944 blocks, of which 10,613 are ore blocks 

with block size of 25×25×25 m.  

Geostatistical analysis showed that the 

deposit has the best spatial continuity direction 

from North East to South West  

with the anisotropic ratio of 1.823.  

The geostatistical analysis results are presented  

in Fig. 4, 5, 6, and 7. 

This variogram model was applied  

to implement OK and 10 realizations of SGS  

on the Sinquyen copper mine. The grade-tonnage 

curves are presented in Fig. 8. 

It is clear from the grade-tonnage curves 

that OK has underestimated the grade of copper. 

For instance, at cut-off 1 % Cu, the metal tonnage 

estimated by OK is 47 % while SGS ranges  

from 68 to 72 %. The average copper grade 
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Fig. 4. Variogram model has the best spatial continuity 

 

 

 

 
 

Fig. 5. Variogram model has the least spatial continuity 

 

 

 

    
 

Fig. 6. Variogram map      Fig. 7. Anisotropic ellipse 
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Fig. 8. Grade-tonnage curves of OK and SGS.  

(Follow increasing trend of cut-off: Downward lines: tonnage curves, upward lines: grade curves) 

 

estimated by OK with cut-off 1 % is 1.56 % and 

the result of SGS is from 2.1 to 2.2 %. 

Another important conclusion from the 

stochastic simulation result is that the variability 

of simulation-based copper metal tonnage is 

around 4 %. 

CONCLUSION 

In this paper, ordinary kriging and 

sequential Gaussian simulation have been 

reviewed and applied at the Sinquyen copper 

deposit. The result shows that there is a high 

possibility that OK has underestimated the grade 

of copper. Moreover, the variability of copper 

metal in the deposit is 4%. This information is 

very helpful when performing the mine planning 

for this project.  

In future, it would be interesting to 

incorporate the geological uncertainty generated 

by SGS into the mine planning process, so we can 

evaluate its impact on the project’s NPV. 
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has led to over/under estimation in many circumstances. To overcome these drawbacks, the 

deterministic estimation result of kriging is usually followed by stochastic results provided 

by stochastic simulation. In this paper, the application of ordinary kriging and stochastic 

simulation are performed to build the resource model together with the uncertainty 

assessment of the Sinquyen copper mine. 
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