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Abstract

The paper is devoted to studying the possibility of using artificial neural networks (ANN) to estimate ground
subsidence caused by underground mining. The experiments showed that the most suitable network structure
is a network with three layers of perceptrons and four neurons in the hidden layer with the back propagation
algorithm (BP) as a training algorithm. The subsidence observation data in the Mong Duong underground coal
mine and other parameters, including: (1) the distance from the centre of the stope to the ground monitoring
points; (2) the volume of mined-out space; (3) the positions of the ground points in the direction of the main
cross-section of the trough; and (4) the time (presented by cycle number), were used as the input data for the
ANN. The findings showed that the selected model was suitable for predicting subsidence along the main profile
within the subsidence trough. The prediction accuracy depended on the number of cycles used for the network
training as well as the time interval between the predicted cycle and the last cycle in the training dataset. When
the number of monitoring cycles used for the network training was greater than eight, the largest values of RMS
and MAE were less than 10 % compared to the actual maximum subsidence value for each cycle. If the network
training was less than eight cycles, the results of prediction did not meet the accuracy requirements.
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MAPKLUEWUOEPUA
Hay4Has cTaTbs

MporHo3upoBaHne NpocafKu rpyHTa B pe3ynbraTe Nog3eMHOi A06bIun
C UCNOJIb30BaHNEM MHOIOCJIOMHbIX UCKYCCTBEHHbIX HEMPOHHbIX ceTel
C NPAAIMOii CBA3bIO U aNropuTMa 06paTHOro pacnpocTpaHeHus — UCCle;0BaHne
Ha npMMepe NoA3eMHOro yroibHoro pyaHuka MoHr [lyoHr (BbeTHam)

K.JI. Hryen! P4, K. M. Hryen! , . T. Tpau? , X. H. Byit!
! Xanotickutl yHugepcumem 2eoJi02uu U 20pHo20 denda, 2. XaHoti, BbemHam
% Xawoiickuii yHusepcumem 2paxoaHckozo cmpoumesnscmaa, 2. Xauoti, Boemnam
04 nguyenquoclong@humg.edu.vn

AHHOTaUuA

CraTbs MOCBSIILIEHA M3YyUeHMIO BO3SMOXKHOCTH MCITOIb30BaHMSI MCKYCCTBEHHBIX HelipoHHbIX ceTelt (MHC) ajist
OII€HKU ITPOCA/IKM TPYHTA, BBI3BAHHO MIOA3eMHOI1 T0ObIYeit. JKCIIepUMEHTHI TI0Ka3aJin, UTO Hanbosiee Imoixo-
JSIIelt CTPYKTYPOJ CeTU SIBJISIETCS CeThb C TPEMS CI0SIMM ITePLENITPOHOB M YeThIPbMS HeipOHaMM B CKPBITOM
CJI0e C aJITOPUTMOM OGPaTHOTO PACIIPOCTPAHEHUS B KauecTBe aJiropuTMa obydueHwus. JlaHHbIe HAOMIOmeHNS
3a MPOCaJKOii TPYHTa Ha MOJI3€MHOM YTOJIbHOM pynHMKe MoHTr JIyoHT 1 Jpyrue napaMeTpsl, BKIIOUAOIIMe:
1 — paccTosiHMe OT IIeHTpa HITPeKa 10 TOUYeK Ha3eMHOTO MOHUTOPUHTA; 2 — 06beM BbIPabOTaHHOTO IIPOCTPaH-
CTBa; 3 — MOJIOKEHME Ha3eMHBIX TOUEK B HAIlpaB/JIeHMM [TIaBHOTO CEUeHMsS MYJIbIbl IPOCAgKN; U 4 — BpeMs
(pencTaBlieHHOE HOMEPOM IIVMK/IA), ObLIM MICTIOb30BaHbl B KAUECTBE BXOAHBIX JaHHbIX 1151 THC. Pe3ynbTaThl
T0Ka3ajIu, 9YTO BbIOpaHHAs MOJE/b MpreMieMa ISl IIPOTHO3MPOBAHMUS MTPOCAIKY BIOJIb TJIABHOTO CEYEHUS
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(mpodwis) B mpenenax My/abAbl Mpocagky. TOUHOCTb MPOTHO3MPOBAaHMS 3aBucCela OT KOIMYECTBa IMKIIOB,
MCIIO/Ib30BAHHBIX [JIsI OOYUYeHUST HEIIPOHHOI CeTH, a TAK)Ke OT BPEMEHHOTO MHTePBaIa MEXIY IMPOTHO3UPY-
€MbIM IIMKJIOM U TTOCIeSHUM IIMKJIOM B Habope NaHHbIX ISl 00yueHus1. Korma KonmnyecTBO IMKIOB MOHUTO-
PUHTA, UCTIOb30BAHHBIX [JIs1 00YYEHMUSI CETH, TPEBHIIIAI0 BOCEMb, HanbObINe 3HaueHust RMS (cpegHekBa-
IpaTuyeckast morpenHoctb) M MAE (cpemHsist aGCoIOTHAS o1bKa) cocTaysivi MmeHee 10 % oT haKT1ueckoro
MaKCUMMAaJIbHOTO 3HAYEHMsI TPOCAKY AJI KasKA0T0 IMK/IA. EC/IM YMCTo IUKIIOB OOYYeHUSsI CeTH ObIIO MEHbIIIe
BOCHMM, Pe3Yy/IbTAThI IPOTHO3MPOBAHMSI HE COOTBETCTBOBAIM TPEOOBAHMSIM 10 TOUHOCTM.

KnioueBble cnoBa

rmoj3eMHast pa3paboTKa MOJe3HbIX MCKOTIaeMbIX, MY/IbJia TIPOCAJKM, TPOTHO3UPOBAHME MTPOCATKM, UCKYC-
CTBEHHAs HeJIPOHHASI CeTh, 0OpATHOE PaCIIPOCTPAHEHME
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1. Introduction

Underground mining produces large goaf that
unbalances natural stress in the ground. Then gravity
forces the soil and rock above to tend towards filling the
goaf below to achieve a new equilibrium [1]. This filling
process causes ground subsidence with formation of a
subsidence trough, which is dangerous to natural and
man-made structures located on the surface. Therefore,
special interest is paid to monitoring and prediction of
subsidence within mining areas in the world [2-4] and in
Vietnam [5].

Based on the development of computer science, the
studies of ground subsidence prediction with the use
of Artificial Neural Network (ANN) were performed by
many authors. Ambrozi¢ & Turk [2] first published the
results of prediction of subsidence due to underground
coal mining at the Velenje mine, Slovenia, using a 2-layer
direct transmission ANN. Hejmanowski & Witkowski [6]
published the study on application of ANN for mining-
caused surface deformation prediction in Poland. Zhao
& Chen [7] presented the results of ANN application
in prediction of surface deformation at metal mines
in China. The study of Yang & Xia [4] presented the
subsidence prediction for mines with thin rock layer
below and thick soil layer above the productive strata.
K. D. Kim et al. [8] studied and predicted the ground
surface subsidence in Samcheok city due to the coal mine
operation. Y. Kim et al. [9] developed an ANN model to
predict the subsidence caused by mining activities using
the results of survey of 247 subsidence areas at 27 mines
for training and validation of their ANN model. Lee et al.
[10] used the input data including topography, geology,
mining methods etc., for ANN training and creating
the map of ground surface subsidence prediction in an
underground mining area. These studies were mainly
devoted to estimation of subsidence at the final stage
of the displacement process, i.e. description of the
subsidence trough in its final static phase, while studying
the ground surface subsidence process through time will
allow the early warning of deformations on the surface.
However, the studies on application of ANN in predicting
the subsidence through time are not available.

The studies of ground surface subsidence prediction
through time mostly use mathematical models, in which

the exponential function proposed by Knothe is mostly
applicable due to its advantage of allowing predicting the
subsidence of monitoring points on the surface through
time [11-13]. However, the ground surface subsidence
due to underground mining is a complicated process, and
it cannot be fully described by the Knothe function, so
the accuracy of subsidence prediction is not rather high
in some cases [12, 14]. To overcome this problem, several
extension forms of Knothe function were proposed [13, 15],
e.g. adding a parameter to this function to describe the
most realistic subsidence process and thereby optimising
subsidence prediction [12, 15]. Gonzalez-Nicieza et al. [16]
used the prediction function of Knothe-Sroka-Schober to
develop a new prediction function and applied it to the
Central Asturian coal basin. Their subsidence prediction
results proved to be close to the actual subsidence
observations. Liu et al. [17] developed the function for
subsidence prediction through time on the basis of Harris
function and achieved more accurate results compared to
applying the original Harris function.

The above studies on ground surface subsidence
prediction through time focussed mainly on the prediction
for each monitoring point. Its advantage is suitability
for the prediction of subsidence under structures on the
surface, but the disadvantage is the subsidence prediction
at the monitoring point only, while the subsidence in
any other point is interpolated from the subsidence in
the monitoring points. To overcome these limitations
applying ANN was suggested to predict subsidence as
well as determine the subsidence value in any points in
the subsidence trough at any time. With the advantage of
being a non-model based method, ANN is easy to test and
modify using different groups of input parameters. Thus,
ANN seems to be the most suitable method for predicting
and interpolating surface subsidence through time in
mining areas, especially at underground coal mines such
as in Quang Ninh, Vietnam.

Depending on the availability of training data,
ANN can be used to predict subsidence in many cases
such as predicting subsidence in the planning phase or
predicting subsidence in the mining phase. For the case of
predicting in the planning phase, a lot of training data on
many different mining condition parameters is needed.
With such training data ANN is capable to be predictable
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during mining phase too. However, it is quite difficult to
collect such training data nowadays.

In this study, we tested the prediction of subsidence
at underground mines through time during mining
phase using training data, consisted of data of historical
subsidence monitoring at Mong Duong underground coal
mine (Quang Ninh, Vietnam). The testing results allowed
evaluating the effect of the number of training cycles as
well as the ANN ability to predict surface subsidence at
underground coal mines in Quang Ninh area.

2. Function of subsidence prediction
for Multi-Layer Perceptron ANN

The most widely used ANN model is the Multi-Layer
Perceptron (MLP) (Fig. 1). A general MLP is a network with
nodes, or neurons, connected to each other and placed in
n layers, including the input layer (which was not taken
into account in some studies), the output layer (n" layer)
and the hidden layer (n — 1). The input neurons are not
neurons in a very real sense, because they do not perform
any computations with the input data, but they simply
accept the input data and transmit them to the next layer
[18]. The neurons of the following layer are connected with
and receive data from the neurons of the previous layer
(the data are not transmitted in the opposite direction,
so this network is called “feed-forward neural network”).

Input Hidden Output

layer layers layer

Yo

Fig. 1. Feed-forward neural network
https://www.intechopen.com/chapters/51131

In a multilayer feed-forward neural network, the
output value of one layer becomes the input value for the
next layer. The output value of each neuron is defined as
follows:

Ni

1 1,1-1),,(1-1

=l 2l Ty b . M)
=1

In which:

y?" is the output value of the i neuron in layer I
(I=1,..,Landi=1,...,N),

ool(..” D is the weight that links the j" neuron of class
[ -1 to the i neuron of class L.

The function f is chosen based on specific
requirements. In subsidence prediction, a sigmoid
function is often used (Eq. 2) because of smoothness of
this function. Furthermore, this function is especially
convenient for using in ANNs training by back-
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propagation algorithm, because it is easy to derive, and
the amount of computations in the training process can
be significantly reduced.

1

f(x)=——. )
1+e

When all the neurons in a layer have completed their
computations, the next layer can start the computations,
because the outputs of the previous layer are combined
with the associated weights and become the inputs for
the next layer. When all the neurons have completed
the computations then the output neurons produce the
result. In order to get the desired outputs, in the training
data and training process, the associated weights of
the neural network should be adjusted. The algorithms
that determine the associated weights of the cycle data
are called network training algorithms. Among these
algorithms, the most popular one for MLP networks is
back-propagation algorithm [19].

Same to feed-forward neural networks used for
other purposes, the feed-forward neural network used in
surface subsidence prediction in the mining area consists
of 3 layers, including: input layer, hidden layer, and
output layer. The input layer consists of neurons, each of
which receives an input value that is a factor influencing
the surface subsidence. The hidden layer consists of
neurons that determine general relationship between
the parameters influencing the surface subsidence. The
output layer has only one neuron and the output value
of this neuron is the predicted subsidence value. These
three layers are connected: all the neurons of the input
layer are connected to each neuron of the hidden layer,
and these connections are represented by associated
weights in the network training process. Similarly, each
neuron of the hidden layer is connected to the neuron of
the output layer.

3. Selection of input data for ANN
in ground surface subsidence prediction
through time

The parameters influencing the surface deformation
process are topography, soil and rock mechanical
properties, thickness and dip angle of the coal seam,
average mining depth, etc. Among these parameters, soil
and rock mechanical properties commonly do not change
through time in the same mining area, so they are not
selected as input factors [20].

The parameters of topography, coal seam dipe angle,
average mining depth are characterized by the distance
from the center of a stope to the monitoring points
on the surface at the time of subsidence monitoring.
The size of coal mining stope (underground working)
changes through time, so the distance from its center to
the monitoring points on the surface also changes. The
symbol for this distance between monitoring point i* and
the center at subsidence monitoring time T'is L.

The factors of average thickness of the coal seam,
shape and size of the stope and mining progress are
characterized by the volume of the mining stope (or the
volume of coal extracted) through time are denoted as V,.
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The coordinates of the monitoring points i on the
main profiles of the subsidence trough are (X, Y)) in
the coordinate system whose origin is the center of the
subsidence trough (this center is determined based
on the maximum subsidence angle (0) or subsidence
monitoring data). In the direction of the coal seam dip,
the coordinates of the monitoring point are Y; =0, X, # 0
(X; is negative at points located on the opposite slope of the
subsidence trough and vice versa). In the strike direction,
the coordinates of the monitoring point are X; =0, Y, # 0
(Y, is negative at points located in the direction of the
mining starting and vice versa). The monitoring time is
an important input parameter; as time goes on, other
parameters such as the distance from the center of a coal
mining stope to monitoring points on the surface and the
volume of the stope (coal extracted) change. The symbol
T; is time of subsidence monitoring in i cycle, T; + n is
the time of subsidence prediction (n is the time interval
between subsidence monitoring cycles).

Thus, 4 input parameters selected for ANN in
predicting underground mining-caused ground subsidence
through time include: monitoring time (T}), volume of coal
stope (V)), distance from the center of the coal stope to
monitoring points on the surface (LE"), and coordinates of
the monitoring points on the surface (V) (Fig. 2).

4. Selection of ANN architectural parameters

For improving the accuracy of the prediction results,
the number of the ANN hidden layers should be increased,
but this will complicate the ANN structure, increase the
training time and the associate weight computation time
[7]. Selecting the number of hidden layers depends on
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the ANN structure and the number of training cycles. If
the number of training cycles is small and the number
of hidden layers is large, the ANN is characterized by
overfitting. In subsidence prediction, due to the small
number of training data, the ANN with a hidden layer is
evaluated as the most suitable [21].

For the feed-forward ANN subsidence prediction
model, it is easier to determine and adjust the number
of neurons in each hidden layer than to increase the
number of hidden layers. Determining the number of
neurons in the hidden layer is important in forming
the ANN architecture. Although hidden layers do not
directly interact with the inputs, they greatly influence
the outputs. Therefore, the selection of the number of
hidden layers and the number of neurons in a hidden
layer should be carefully considered. Although the
hidden layers do not directly interact with the inputs,
they greatly influence the output. Therefore, selecting
the number of hidden layers and the number of neurons
in the hidden layer must be carefully considered. If the
number of neurons in the hidden layer is too small, the
ANN will be underfitted (underfitting is a phenomenon
when the ANN predicts inaccurately even on the
training data). Conversely, if the number of neurons in a
hidden layer is too great, the ANN may suffer from some
problems such as too large training time, overfitting
(overfitting is a phenomenon when the ANN prediction
is very accurate with training data, but less accurate with
actual data). The common methods for determining the
number of neurons in a hidden layer are as follows [22]:

— The number of neurons in each hidden layer should
be between the number of neurons in the input and
output layers.

Center of stope

1 T, 2 I, / 3 T
AV AV AVAV AV AV AV AoV B y (f
VAV AVAVAVAVAYVAVAVAVANR 4 1 1

l
|
|
|

Vs

Fig. 2. ANN input parameters
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—The number of neurons in each hidden layer
should be equal to two-thirds of the sum of the number of
neurons in the input and output layers.

— The number of neurons in each hidden layer should
be calculated by the following formula [23]:

i<14+m(l+3), 4)

where: m is the number of training cycles, [ is the number
of hidden layers.

In this study, the selected feed-forward neural
network for the prediction of surface subsidence through
time at Mong Duong underground coal mine has 1-hidden
layer ANN architecture with 4 neurons in the hidden
layer. Thus, the input layer consists of 4 neurons, each
of which represents a parameter: monitoring time (7)),
volume of stope (coal extracted) (V,), distance from the
center of the coal extraction stope to monitoring points
on the surface (L?), and coordinates of the monitoring
points on the surface (Y)). The hidden layer also consists
of 4 neurons that determines the general relationship
between the parameters influencing the mine surface
subsidence. The output layer has only one neuron and
its output is the predicted subsidence value (Fig. 3).

Input layer

Hidden layers Output layer

Subsidence

Fig. 3. Architecture of ANN for subsidence prediction

5. Trainning feed-forward ANN

The ANN training data includes collected data and
subsidence monitoring data along monitoring line P, the
main cross-section of the subsidence trough, located
above stope No. 2 in coal seam No. 9 of North Mong Duong
at Mong Duong underground coal mine. Coal extraction
in stope No. 2 started in the second quarter of 2013 and
was completed in the second quarter of 2014.

The monitoring line P in the direction of extraction
propagation was arranged with 22 monitoring points.
The distance between them ranges 10 to 30 m. The
subsidence monitoring was carried out for 2 years
with a 2-month cycle (total of 12 monitoring cycles),
using a Leica NAK2 automatic level which meets the
mine surveying technical requirements. The elevations
of the monitoring points were measured against
the benchmark of class IV levelling accuracy. After
completion of the monitoring in 2014, the mine surface
was re-surveyed to ensure accurate determination of
the maximum subsidence value. After stopping the
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cyclical subsidence monitoring, the mine surface was
re-monitored to ensure accurate determination of the
maximum subsidence value.

The cyclical subsidence monitoring data and 4 input
parameters (the extraction volume, the distance from
the stope center to the monitoring points on the surface,
the coordinates of the monitoring points and the time)
corresponding to these cycles formed the training and
validation data files. The subsidence monitoring data of
the remaining cycles were used to test and evaluate the
subsidence prediction accuracy of the ANN.

The ANN for ground surface subsidence prediction
through time was trained in 5 cases as follows:

Case 1: Using the data of the first 11 cycles for
training; the subsidence in the last cycle was used to
evaluate the ANN prediction accuracy.

Case 2: Using the data of the first 10 cycles for
training, the subsidence in the next 2 cycles was used to
evaluate the prediction accuracy of the ANN.

Case 3: Using the data of the first 9 cycles for training,
the subsidence in the next 3 cycles was used to evaluate
the ANN prediction accuracy.

Case 4: Using the data of the first 8 cycles for training,
the subsidence in the next 4 cycles was used to evaluate
the ANN prediction accuracy.

Case 5: Using the data of the first 7 cycles for training,
the subsidence in the next 5 cycles was used to evaluate
the the ANN prediction accuracy.

The described training and prediction data of the
monitoring cycles are shown in Table 1.

Table 1
ANN training and prediction
Case Monitoring cycles Monitoring cycles
for training for prediction

1 1,2,3,...,9,10, 11 12
2 1,2,3,...,8,9,10 11,12
3 1,2,3...,7,8,9 10,11,12
4 11,2,3,..,6,7,8 9,10,11,12
5 1,2,3,4,5,6,7 8,9,10,11,12

In all the 5 cases, the data of the first cycles used
to build the predictive model were randomly divided in
the proportion of 60 %, 20 %, and 20 % corresponding
to the training files, validation files, and testing files,
respectively.

The training data set (Fig. 4) is in MS Excel format
with 5 columns (corresponding to 4 input parameters
and the monitored subsidence values in the monitoring
points) and many rows (the number of rows depends on
the training data amount).

The training and prediction data were normalized
using formula (5):

_ X~ Xnin
T ®
max min
where: x, y are the pre-normalized and post-normalized
values of the input parameters, respectively; x,.x and
Xmin are the pre-normalized maximum and minimum
values of each input parameter.
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A | B | . | D E
Cycle Volume Distancei Coordinate Mon_ltored
(months)  (m3) (m) i) |Toordence
1 (mm)
2 (0] 0.0 129.9 -194.0 o
=3 (0] 0.0 103.8 -150.0 (o]
5 2 13000.0 135.2 -194.0 (0]
6 2 13000.0 107.3 -150.0 (o]
8 4 26000.0 233.6 156.0 -7
9 4 26000.0 254.9 180.0 -23
10
il 8 52000.0 207.8 156.0 -51
2 8 52000.0 228.6 180.0 -34
14 10 65000.0 194.6 156.0 -12
15 10 65000.0 215.1 180.0 -9
T 12 78000.0 182.1 156.0 -18
18 12 78000.0 202.2 180.0 -16

Fig. 4. Structure of training data file in MS Excel format
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101 -

——Train
—Validation
—Test

Best

—_
=]
>

10!

Mean Squared Error (mse)
=

—_
o
b

1074 E 1 1 1 1
0 5 10 15 20 25

29 Epochs
(a)

elSSN 2500-0632

https://mst.misis.ru/

HryeH K. J1. n ap. MporHo3mpoBaHne Npocaaku rpyHTa B pesynibtate NoA3EMHON A06bIYMN...

We have built the model based on Matlab platform
(version R2016a) for ANN training and ground surface
subsidence prediction in underground mining areas.
In this modular programming, we used some neural
network functions in the Neural Network Toolbox of
Matlab, which gave reliable results and saved program-
ming time.

The training process of the feed-forward ANN for
subsidence prediction gave good results at all 3 stages:
training, validation, and testing. In the first 4 cases,
the output errors were tiny and gradually tended to
approaching “0”, as shown in Fig. 5, a (training, validation,
and testing error curves), Fig. 5, b (histograms of training,
validation, and testing errors) and Fig. 6 (coefficients of
correlation between the predicted subsidences and the
actual subsidences).

This all showed that that the feed-forward ANN
was successfully trained and ready for subsidence
prediction.

Error Histogram with 20 Bins

B Training
200 F I Validation
I Test
Zero Error
150

100

Instances

50

-0.05029
-0.04267
-0.03506
0.002989

2I99
Errors = Targets — Outputs

(b)

Fig. 5. (a) Error curve for ANN training (b) Error histogram for ANN training
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Fig. 6. Ccoefficients of correlation between the feed-forward ANN predicted subsidences and the actual subsidences:
(a) for training data, (b) for validation data, (c) for testing data, and (d) for all the data
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6. Evaluation of subsidence prediction accuracy
The accuracy of the subsidence prediction based on
feed-forward ANN was evaluated using the mean absolute
error (MAE), root mean square (RMS), and coefficient of
correlation (r) between the monitored subsidence (actual
subsidence) and the predicted subsidence:

1 n
RMS = ;Z(ni—n?)z, ©)
i=1

—nP
MAE:ZH:T]I—TL" (7)

> (=) =)
i=1

r =

. 27 ®)
S -m)*mP -
i=1

where: n, and n/ are actual subsidence and predicted
subsidence, respectively; M; and 1)/ are mean of actual
subsidence and predicted subsidence, respectively.

7. Results and discussion

The trained feed-forward ANN was used to predict
the subsidence in 22 points on monitoring line Pin several
cycles. In more details, case 1 predicted the subsidence in
cycle 12; case 2 predicted the subsidence in cycles 11 and
12; case 3 predicted the subsidence in cycles 10, 11, and
12; case 4 predicted the subsidence in cycles 9, 10, 11, and
12; and case 5 predicted the subsidence in cycles 8, 9, 10,
11,and 12.

If we let the neural network (ANN) to continuously
predict the subsidence, and the training data are available
forthefirst cycles only,the ANN will continue to predict the
subsidence while the subsidence process may stop (when
the mine/the coal mining stope is no longer exploited).
We solved this problem by using training data, namely,
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subsidence monitoring data from other subsidence
troughs in the mining area. The more subsidence troughs
were used to train the ANN, the better and more accurate
subsidence prediction was produced by the ANN.

The predicted subsidences were compared with
the monitored subsidences in the corresponding cycles.
The accuracy of the subsidence prediction results was
evaluated based on MAE, RMS and r values (formulas 9,
10, and 11) for all monitoring points in the same cycle.
The results of the accuracy evaluation for the 5 cases were
as shown in Table 2.

Table 2
Evaluation of subsidence prediction accuracy
Case Cycle RMS (m) | MAE (m) r
1 12 0.035 0.030 0.995
5 11 0.031 0.023 0.995
12 0.036 0.027 0.993
10 0.026 0.018 0.996
3 11 0.031 0.021 0.996
12 0.041 0.028 0.994
9 0.020 0.013 0.997
10 0.043 0.032 0.990
4 11 0.071 0.050 0.977
12 0.081 0.059 0.967
8 0.107 0.095 0.996
9 0.156 0.132 0.922
5 10 0.171 0.137 0.899
11 0.189 0.152 0.898
12 0.197 0.160 0.999
Case 1: the errors of subsidence prediction

RMS=0.035m and MAE = 0.030m were equivalent to 4.3%
and 3.7 %, respectively, of the maximum subsidence in
cycle 12 (which was equal to -0.814m). The coefficient
of correlation (r) between the actual subsidence and
the predicted subsidence in cycle 12 was 0.995. Figure 7
shows the actual and predicted subsidence curves
in cycle 12.
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Fig. 7. Actual and predicted subsidence curves in cycle 12 (Case 1)
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Case 2:incycle 11, the errors of subsidence prediction
RMS =0.031m and MAE = 0.023m were equivalent to 4.1 %
and 3.0 %, respectively, of the maximum subsidence in
cycle 11 (which was equal to -0.686m). The coefficient
of correlation r = 0.995. In cycle 12, RMS = 0.036m,
MAE = 0.027m were equivalent to 4.4 % and 3.3 %,
respectively, of the maximum subsidence in cycle 12. The
correlation coefficient r = 0.993. Figure 8 shows the actual
and predicted subsidence curves in cycles 11 and 12.

Case 3:incycle 10, the errors of subsidence prediction
RMS =0.026m and MAE = 0.018m were equivalent to 3.6 %
and 2.5 %, respectively, of the maximum subsidence in
cycle 10 (which was equal to —0.580m). In cycle 11, RMS =
0.031m, MAE = 0.021m were equivalent to 3.9 % and 2.6%,
respectively, of the maximum subsidence in cycle 11. In
cycle 12, RMS = 0.041m, MAE = 0.028m were equivalent to
5.0 % and 3.4 %, respectively, of the maximum subsidence
in cycle 12. The correlation coefficients in all 3 cycles
were very close to 1, namely, 0.999, 0.996, and 0.994 in
cycle 11, cycle 12, and cycle 13. respectively. Figure 9
shows the actual and predicted subsidence curves in
cycles 10, 11, and 12. Thus, in all 3 cycles, the MAE and
RMS characterizing the accuracy of subsidence prediction
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were tiny, and the predicted and actual subsidence
curves proved to be very close to each other. This clearly
demonstrated that the subsidence prediction results were
characterized by rather good accuracy.

Case 4: in cycle 9, the errors of subsidence prediction
RMS =0.020m and MAE = 0.013m were equivalent to 3.0 %
and 2.0 %, respectively, of the maximum subsidence in
cycle 9 (which was equal to -0.461m). In cycle 10, RMS
= 0.043m and MAE = 0.032m sequentially equivalent to
5.9 % and 4.4 % of the maximum subsidence of cycle 10. In
cycle 11, RMS =0.071m, MAE = 0.050m were equivalent to
9.3 % and 6.6 %, respectively, of the maximum subsidence
in cycle 11.In cycle 12, RMS = 0.081m, MAE = 0.059m were
equivalentto 9.9 % and 7.3 %, respectively, of the maximum
subsidence in cycle 12. The correlation coefficients r in
these 4 cycles were different. The correlation coefficients
rwere 0.997 and 0.995, very close to 1, in cycles 9 and 10,
respectively, and gradually decreased in cycles 11 and 12
t0 0.977 and 0.967, respectively.

We see that the values of MAE and RMS of the
subsidence prediction in cycles 9 and 10 were tiny,
but increased in cycles 11 and 12. Simultaneously, the
correlation coefficient was high in cycle 9 and gradually
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Fig. 8. Actual and predicted subsidence curves in cycles 11 and 12 (Case 2)
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decreased for cycles 10, 11, and 12. These showed that the
predicted subsidence error increases with increasing the
period lasted from the monitoring cycles (used to train
the ANN) time to the prediction time.

Figure 10 shows that predicted and actual subsidence
curves are very close to each other in cycles 9, 10, and 11,
demonstrating that the predicted subsidences have high
accuracy.

Analysis of the results of cases 3 and 4 showed that,
although the number of subsidence monitoring cycles
used to train the ANN was large (at least 8 cycles), we
should use the ANN to predict the subsidence for the
next 3 cycles only, and then should continue monitoring
to update the ANN model input parameters to ensure the
prediction accuracy.

Case 5: in cycle 8, the errors of subsidence prediction
RMS = 0.107m and MAE = 0.095m were equivalent
to 31.4 % and 11.8 %, respectively, of the maximum
subsidence in cycle 8 (which was equal to -0.341m). This
was the most accurate subsidence prediction result in case
5, while even its prediction accuracy was much inferior of
that in cases 1, 2, 3, and 4. The reason of this insufficient
accuracy was that the number of monitoring cycles (used
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for the ANN training) in case 5 was only 7, less than that
used in cases 1, 2, and 3.

In cycles 9, 10, 11, and 12, the values of RMS and
MAE were larger than those in cycle 8. For instance, RMS
values in cycles 9, 10, 11, and 12 were 33.8 %, 29.5 %,
32.6 %, and 33.9 %, respectively, of the maximum
subsidence. Similary, MAE values in cycles 9, 10, 11, and
12 were 28.6 %, 23.6 %,26.2%, and 27.6 %, respectively, of
the maximum subsidence. The correlation coefficients in
all the cycles were much lower than those in the previous
four cases. Figure 11 shows that, in all the cycles, the
predicted and actual subsidence curves differ markedly
from each other.

It can be seen that if we would like to predict
the subsidence with high accuracy, we should use at
least 8 cycles as ANN training data. However, if many
monitoring cycles are used as the training data, only few
cycles further can be predicted, providing low practical
significance of the subsidence prediction through time.
At the same time, to improve subsidence prediction
through time, it is expedient to use more data of other
similar subsidence troughs in the same mining area as
ANN training data.
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Fig.10. Actual and predicted subsidence curves in cycles 9, 10, 11, and 12 (Case 4)

Distance from monitoring points to center of subsidence trough (m)
0—1210 -160 -110 -60 -10 40 90 140 190

0.0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9

Subsidence (m)

--®-Pre9 —@—Act9 ---Pre9 —o— Act9
--0--Pre 1] —®—Actll ---=Prel2 —o— Actl12

Fig. 11. Actual and predicted subsidence curves in cycles 8, 9, 10, 11, and 12 (Case 5)

249

==0-=Pre 10 =—o—Act 10



MINING SCIENCE AND TECHNOLOGY (RUSSIA)

FOPHbIE HAYKU U TEXHOJ1I0NMA
2021;6(4):241-251

8. Conclusion

The three-layer feed-forward neural network
applying back-propagation algorithm, the most
common training algorithm, form a suitable ANN model
to predict subsidence of monitoring points located on the
surface along the main profile within a subsidence trough
in underground coal mining area.

The quality (accuracy and reliability) of the subsidence
prediction in the area of Mong Duong underground
coal mine depended on the number of ANN training
monitoring cycles as well as the time interval between
the cycles to be predicted and the last monitoring cycle
used to train the neural network. When the number of the
monitoring cycles used for training the neural network
was greater than 8, the subsidence prediction results were
very accurate. This was demonstrated by closeness of
the predicted subsidence curves to the actual subsidence
curves, as well as by the corresponding values of RMS, MAE,
and the coefficient of correlation (r) between the actual
subsidence and the predicted subsidence. For instance,
the maximum values of RMS and MAE were 10 % lower
than the maximum actual subsidence, and the correlation
coefficient was more than 0.9 (practically equal to 1).
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When the number of monitoring cycles used for
training the neural network was 7, the subsidence
prediction results were significantly less accurate.
This was illustrated by the deviation of the predicted
subsidence curve from the actual subsidence curve. At
the same time, RMS and MAE of the predicted subsidence
in cycle 8, which provided the most accurate prediction
result, were only 14.5 % and 11.3 %, respectively, of
the maximum actual subsidence. The values of these
parameters in the following cycles were even higher,
about 30 % and 20 %, respectively. Thus,when the training
data were provided by less than 8 cycles, the subsidence
prediction can not ensure acceptable accuracy.

The results of the case study at Mong Duong
underground coal mine showed that ANNs were
effective in predicting subsidence in underground
mining areas. However, in order to improve practicality
of ANN subsidence prediction, one should perform
extensive studies with a large set of ANN traning
data, for instance, data on subsidence from many
other subsidence troughs, as well as test other neural
networks which can prove to be more suitable for this
training dataset.
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