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Abstract
The paper is devoted to studying the possibility of using artificial neural networks (ANN) to estimate ground 
subsidence caused by underground mining. The experiments showed that the most suitable network structure 
is a network with three layers of perceptrons and four neurons in the hidden layer with the back propagation 
algorithm (BP) as a training algorithm. The subsidence observation data in the Mong Duong underground coal 
mine and other parameters, including: (1) the distance from the centre of the stope to the ground monitoring 
points; (2) the volume of mined-out space; (3) the positions of the ground points in the direction of the main 
cross-section of the trough; and (4) the time (presented by cycle number), were used as the input data for the 
ANN. The findings showed that the selected model was suitable for predicting subsidence along the main profile 
within the subsidence trough. The prediction accuracy depended on the number of cycles used for the network 
training as well as the time interval between the predicted cycle and the last cycle in the training dataset. When 
the number of monitoring cycles used for the network training was greater than eight, the largest values of RMS 
and MAE were less than 10 % compared to the actual maximum subsidence value for each cycle. If the network 
training was less than eight cycles, the results of prediction did not meet the accuracy requirements.
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Аннотация
Статья посвящена изучению возможности использования искусственных нейронных сетей (ИНС) для 
оценки просадки грунта, вызванной подземной добычей. Эксперименты показали, что наиболее подхо-
дящей структурой сети является сеть с тремя слоями перцептронов и четырьмя нейронами в скрытом 
слое с алгоритмом обратного распространения в качестве алгоритма обучения. Данные наблюдения 
за просадкой грунта на подземном угольном руднике Монг Дуонг и другие параметры, включающие: 
1 – расстояние от центра штрека до точек наземного мониторинга; 2 –  объем выработанного простран-
ства; 3 – положение наземных точек в направлении главного сечения мульды просадки; и 4 – время 
(представленное номером цикла), были использованы в качестве входных данных для ИНС. Результаты 
показали, что выбранная модель приемлема для прогнозирования просадки вдоль главного сечения 
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1. Introduction
Underground mining produces large goaf that 

unbalances natural stress in the ground. Then gravity 
forces the soil and rock above to tend towards filling the 
goaf below to achieve a new equilibrium [1]. This filling 
process causes ground subsidence with formation of a 
subsidence trough, which is dangerous to natural and 
man-made structures located on the surface. Therefore, 
special interest is paid to monitoring and prediction of 
subsidence within mining areas in the world [2–4] and in 
Vietnam [5].

Based on the development of computer science, the 
studies of ground subsidence prediction with the use 
of Artificial Neural Network (ANN) were performed by 
many authors. Ambrožič & Turk [2] first published the 
results of prediction of subsidence due to underground 
coal mining at the Velenje mine, Slovenia, using a 2-layer 
direct transmission ANN. Hejmanowski & Witkowski [6] 
published the study on application of ANN for mining-
caused surface deformation prediction in Poland. Zhao 
& Chen [7] presented the results of ANN application 
in prediction of surface deformation at metal mines 
in China. The study of Yang & Xia [4] presented the 
subsidence prediction for mines with thin rock layer 
below and thick soil layer above the productive strata. 
K. D. Kim et al. [8] studied and predicted the ground 
surface subsidence in Samcheok city due to the coal mine 
operation. Y. Kim et al. [9] developed an ANN model to 
predict the subsidence caused by mining activities using 
the results of survey of 247 subsidence areas at 27 mines 
for training and validation of their ANN model. Lee et al. 
[10] used the input data including topography, geology, 
mining methods etc., for ANN training and creating 
the map of ground surface subsidence prediction in an 
underground mining area. These studies were mainly 
devoted to estimation of subsidence at the final stage 
of the displacement process, i.e. description of the 
subsidence trough in its final static phase, while studying 
the ground surface subsidence process through time will 
allow the early warning of deformations on the surface. 
However, the studies on application of ANN in predicting 
the subsidence through time are not available.

The studies of ground surface subsidence prediction 
through time mostly use mathematical models, in which 

the exponential function proposed by Knothe is mostly 
applicable due to its advantage of allowing predicting the 
subsidence of monitoring points on the surface through 
time [11–13]. However, the ground surface subsidence 
due to underground mining is a complicated process, and 
it cannot be fully described by the Knothe function, so 
the accuracy of subsidence prediction is not rather high 
in some cases [12, 14]. To overcome this problem, several 
extension forms of Knothe function were proposed [13, 15], 
e.g. adding a parameter to this function to describe the 
most realistic subsidence process and thereby optimising 
subsidence prediction [12, 15]. Gonzalez-Nicieza et al. [16] 
used the prediction function of Knothe-Sroka-Schober to 
develop a new prediction function and applied it to the 
Central Asturian coal basin. Their subsidence prediction 
results proved to be close to the actual subsidence 
observations. Liu et al. [17] developed the function for 
subsidence prediction through time on the basis of Harris 
function and achieved more accurate results compared to 
applying the original Harris function.

The above studies on ground surface subsidence 
prediction through time focussed mainly on the prediction 
for each monitoring point. Its advantage is suitability 
for the prediction of subsidence under structures on the 
surface, but the disadvantage is the subsidence prediction 
at the monitoring point only, while the subsidence in 
any other point is interpolated from the subsidence in 
the monitoring points. To overcome these limitations 
applying ANN was suggested to predict subsidence as 
well as determine the subsidence value in any points in 
the subsidence trough at any time. With the advantage of 
being a non-model based method, ANN is easy to test and 
modify using different groups of input parameters. Thus, 
ANN seems to be the most suitable method for predicting 
and interpolating surface subsidence through time in 
mining areas, especially at underground coal mines such 
as in Quang Ninh, Vietnam.

Depending on the availability of training data, 
ANN can be used to predict subsidence in many cases 
such as predicting subsidence in the planning phase or 
predicting subsidence in the mining phase. For the case of 
predicting in the planning phase, a lot of training data on 
many different mining condition parameters is needed. 
With such training data ANN is capable to be predictable 

(профиля) в пределах мульды просадки. Точность прогнозирования зависела от количества циклов, 
использованных для обучения нейронной сети, а также от временного интервала между прогнозиру-
емым циклом и последним циклом в наборе данных для обучения. Когда количество циклов монито-
ринга, использованных для обучения сети, превышало восемь, наибольшие значения RMS (среднеква-
дратическая погрешность) и MAE (средняя абсолютная ошибка) составляли менее 10 % от фактического 
максимального значения просадки для каждого цикла. Если число циклов обучения сети было меньше 
восьми, результаты прогнозирования не соответствовали требованиям по точности.
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during mining phase too. However, it is quite difficult to 
collect such training data nowadays.

In this study, we tested the prediction of subsidence 
at underground mines through time during mining 
phase using training data, consisted of data of historical 
subsidence monitoring at Mong Duong underground coal 
mine (Quang Ninh, Vietnam). The testing results allowed 
evaluating the effect of the number of training cycles as 
well as the ANN ability to predict surface subsidence at 
underground coal mines in Quang Ninh area.

2. Function of subsidence prediction 
for Multi-Layer Perceptron ANN

The most widely used ANN model is the Multi-Layer 
Perceptron (MLP) (Fig. 1). A general MLP is a network with 
nodes, or neurons, connected to each other and placed in 
n layers, including the input layer (which was not taken 
into account in some studies), the output layer (nth layer) 
and the hidden layer (n − 1). The input neurons are not 
neurons in a very real sense, because they do not perform 
any computations with the input data, but they simply 
accept the input data and transmit them to the next layer 
[18]. The neurons of the following layer are connected with 
and receive data from the neurons of the previous layer 
(the data are not transmitted in the opposite direction, 
so this network is called “feed-forward neural network”).

Input
layer

Hidden
layers

Output
layer

xm yp

Fig. 1. Feed-forward neural network 
https://www.intechopen.com/chapters/51131

In a multilayer feed-forward neural network, the 
output value of one layer becomes the input value for the 
next layer. The output value of each neuron is defined as 
follows:
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In which: 
( )l
iy  is the output value of the ith neuron in layer l 

(l = 1,…, L and i = 1, …, Nl),−ω( , 1)l l
ij  is the weight that links the jth neuron of class 

l − 1 to the ith neuron of class l.
The function f is chosen based on specific 

requirements. In subsidence prediction, a sigmoid 
function is often used (Eq. 2) because of smoothness of 
this function. Furthermore, this function is especially 
convenient for using in ANNs training by back-

propagation algorithm, because it is easy to derive, and 
the amount of computations in the training process can 
be significantly reduced.

−=
+

1
( ) .

1 xf x
e  

(2)

When all the neurons in a layer have completed their 
computations, the next layer can start the computations, 
because the outputs of the previous layer are combined 
with the associated weights and become the inputs for 
the next layer. When all the neurons have completed 
the computations then the output neurons produce the 
result. In order to get the desired outputs, in the training 
data and training process, the associated weights of 
the neural network should be adjusted. The algorithms 
that determine the associated weights of the cycle data 
are called network training algorithms. Among these 
algorithms, the most popular one for MLP networks is 
back-propagation algorithm [19].

Same to feed-forward neural networks used for 
other purposes, the feed-forward neural network used in 
surface subsidence prediction in the mining area consists 
of 3 layers, including: input layer, hidden layer, and 
output layer. The input layer consists of neurons, each of 
which receives an input value that is a factor influencing 
the surface subsidence. The hidden layer consists of 
neurons that determine general relationship between 
the parameters influencing the surface subsidence. The 
output layer has only one neuron and the output value 
of this neuron is the predicted subsidence value. These 
three layers are connected: all the neurons of the input 
layer are connected to each neuron of the hidden layer, 
and these connections are represented by associated 
weights in the network training process. Similarly, each 
neuron of the hidden layer is connected to the neuron of 
the output layer.

3. Selection of input data for ANN 
in ground surface subsidence prediction 

through time
The parameters influencing the surface deformation 

process are topography, soil and rock mechanical 
properties, thickness and dip angle of the coal seam, 
average mining depth, etc. Among these parameters, soil 
and rock mechanical properties commonly do not change 
through time in the same mining area, so they are not 
selected as input factors [20].

The parameters of topography, coal seam dipe angle, 
average mining depth are characterized by the distance 
from the center of a stope to the monitoring points 
on the surface at the time of subsidence monitoring. 
The size of coal mining stope (underground working) 
changes through time, so the distance from its center to 
the monitoring points on the surface also changes. The 
symbol for this distance between monitoring point ith and 
the center at subsidence monitoring time T is t

iL .
The factors of average thickness of the coal seam, 

shape and size of the stope and mining progress are 
characterized by the volume of the mining stope (or the 
volume of coal extracted) through time are denoted as Vt.
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The coordinates of the monitoring points i on the 
main profiles of the subsidence trough are (Xi,  Yi) in 
the coordinate system whose origin is the center of the 
subsidence trough (this center is determined based 
on the maximum subsidence angle (θ) or subsidence 
monitoring data). In the direction of the coal seam dip, 
the coordinates of the monitoring point are Yi = 0, Xi ≠ 0  
(Xi is negative at points located on the opposite slope of the 
subsidence trough and vice versa). In the strike direction, 
the coordinates of the monitoring point are Xi = 0, Yi ≠ 0 
(Yi is negative at points located in the direction of the 
mining starting and vice versa). The monitoring time is 
an important input parameter; as time goes on, other 
parameters such as the distance from the center of a coal 
mining stope to monitoring points on the surface and the 
volume of the stope (coal extracted) change. The symbol 
Ti is time of subsidence monitoring in ith cycle, Ti + n is 
the time of subsidence prediction (n is the time interval 
between subsidence monitoring cycles).

Thus, 4 input parameters selected for ANN in 
predicting underground mining-caused ground subsidence 
through time include: monitoring time (Ti), volume of coal 
stope (Vi), distance from the center of the coal stope to 
monitoring points on the surface ( it

iL ), and coordinates of 
the monitoring points on the surface (Yi) (Fig. 2).

4. Selection of ANN architectural parameters
For improving the accuracy of the prediction results, 

the number of the ANN hidden layers should be increased, 
but this will complicate the ANN structure, increase the 
training time and the associate weight computation time 
[7]. Selecting the number of hidden layers depends on 

the ANN structure and the number of training cycles. If 
the number of training cycles is small and the number 
of hidden layers is large, the ANN is characterized by 
overfitting. In subsidence prediction, due to the small 
number of training data, the ANN with a hidden layer is 
evaluated as the most suitable [21].

For the feed-forward ANN subsidence prediction 
model, it is easier to determine and adjust the number 
of neurons in each hidden layer than to increase the 
number of hidden layers. Determining the number of 
neurons in the hidden layer is important in forming 
the ANN architecture. Although hidden layers do not 
directly interact with the inputs, they greatly influence 
the outputs. Therefore, the selection of the number of 
hidden layers and the number of neurons in a hidden 
layer should be carefully considered. Although the 
hidden layers do not directly interact with the inputs, 
they greatly influence the output. Therefore, selecting 
the number of hidden layers and the number of neurons 
in the hidden layer must be carefully considered. If the 
number of neurons in the hidden layer is too small, the 
ANN will be underfitted (underfitting is a phenomenon 
when the ANN predicts inaccurately even on the 
training data). Conversely, if the number of neurons in a 
hidden layer is too great, the ANN may suffer from some 
problems such as too large training time, overfitting 
(overfitting is a phenomenon when the ANN prediction 
is very accurate with training data, but less accurate with 
actual data). The common methods for determining the 
number of neurons in a hidden layer are as follows [22]:

– The number of neurons in each hidden layer should 
be between the number of neurons in the input and 
output layers.
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1 2 3T1 T2 T3 n

n

3
2

1

T1 T2 T3V2 V3

Y1

Y2

Yn

Y3

L1
t1

L1
t2

L1
t3 L2

t1 L2
t2 L2

t3
L3

t1 L3
t2 L3

t3 Ln
t1 Ln

t2 Ln
t3

Fig. 2. ANN input parameters
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– The number of neurons in each hidden layer 
should be equal to two-thirds of the sum of the number of 
neurons in the input and output layers.

– The number of neurons in each hidden layer should 
be calculated by the following formula [23]: 

≤ + +1 ( 3),i m l  (4)

where: m is the number of training cycles, l is the number 
of hidden layers.

In this study, the selected feed-forward neural 
network for the prediction of surface subsidence through 
time at Mong Duong underground coal mine has 1-hidden 
layer ANN architecture with 4  neurons in the hidden 
layer. Thus, the input layer consists of 4 neurons, each 
of which represents a parameter: monitoring time (Ti), 
volume of stope (coal extracted) (Vi), distance from the 
center of the coal extraction stope to monitoring points 
on the surface ( it

iL ), and coordinates of the monitoring 
points on the surface (Yi). The hidden layer also consists 
of 4 neurons that determines the general relationship 
between the parameters influencing the mine surface 
subsidence. The output layer has only one neuron and 
its output is the predicted subsidence value (Fig. 3).

Input layer Hidden layers Output layer

Li
ti

Vi

Ti

Yi

Subsidence

Fig. 3. Architecture of ANN for subsidence prediction

5. Trainning feed-forward ANN
The ANN training data includes collected data and 

subsidence monitoring data along monitoring line P, the 
main cross-section of the subsidence trough, located 
above stope No. 2 in coal seam No. 9 of North Mong Duong 
at Mong Duong underground coal mine. Coal extraction 
in stope No. 2 started in the second quarter of 2013 and 
was completed in the second quarter of 2014.

The monitoring line P in the direction of extraction 
propagation was arranged with 22  monitoring points. 
The distance between them ranges 10 to 30 m. The 
subsidence monitoring was carried out for 2 years 
with a 2-month cycle (total of 12 monitoring cycles), 
using a Leica NAK2 automatic level which meets the 
mine surveying technical requirements. The elevations 
of the monitoring points were measured against 
the benchmark of class IV levelling accuracy. After 
completion of the monitoring in 2014, the mine surface 
was re-surveyed to ensure accurate determination of 
the maximum subsidence value. After stopping the 

cyclical subsidence monitoring, the mine surface was 
re-monitored to ensure accurate determination of the 
maximum subsidence value.

The cyclical subsidence monitoring data and 4 input 
parameters (the extraction volume, the distance from 
the stope center to the monitoring points on the surface, 
the coordinates of the monitoring points and the time) 
corresponding to these cycles formed the training and 
validation data files. The subsidence monitoring data of 
the remaining cycles were used to test and evaluate the 
subsidence prediction accuracy of the ANN.

The ANN for ground surface subsidence prediction 
through time was trained in 5 cases as follows:

Case 1: Using the data of the first 11 cycles for 
training; the subsidence in the last cycle was used to 
evaluate the ANN prediction accuracy.

Case 2: Using the data of the first 10 cycles for 
training, the subsidence in the next 2 cycles was used to 
evaluate the prediction accuracy of the ANN.

Case 3: Using the data of the first 9 cycles for training, 
the subsidence in the next 3 cycles was used to evaluate 
the ANN prediction accuracy.

Case 4: Using the data of the first 8 cycles for training, 
the subsidence in the next 4 cycles was used to evaluate 
the ANN prediction accuracy. 

Case 5: Using the data of the first 7 cycles for training, 
the subsidence in the next 5 cycles was used to evaluate 
the the ANN prediction accuracy.

The described training and prediction data of the 
monitoring cycles are shown in Table 1.

Table 1
ANN training and prediction

Case Monitoring cycles  
for training 

Monitoring cycles  
for prediction

1 1, 2, 3, … , 9, 10, 11 12

2 1, 2, 3, … ,8 , 9, 10 11, 12

3 1, 2, 3, … , 7, 8, 9 10,11,12

4 1, 2, 3, …, 6, 7, 8 9, 10,11,12

5 1, 2, 3, 4, 5, 6, 7 8, 9, 10,11,12

In all the 5 cases, the data of the first cycles used 
to build the predictive model were randomly divided in 
the proportion of 60 %, 20 %, and 20 % corresponding 
to the training files, validation files, and testing files, 
respectively.

The training data set (Fig. 4) is in MS Excel format 
with 5 columns (corresponding to 4 input parameters 
and the monitored subsidence values in the monitoring 
points) and many rows (the number of rows depends on 
the training data amount).

The training and prediction data were normalized 
using formula (5):

−
=

−
min

max min
,

x x
y

x x  
(5)

where: x, y are the pre-normalized and post-normalized 
values of the input parameters, respectively; xmax and 
xmin are the pre-normalized maximum and minimum 
values of each input parameter.



ГОРНЫЕ НАУКИ И ТЕХНОЛОГИИ
MINING SCIENCE AND TECHNOLOGY (RUSSIA)

Нгуен К. Л. и др. Прогнозирование просадки грунта в результате подземной добычи...2021;6(4):241–251

https://mst.misis.ru/

eISSN 2500-0632

246

Fig. 4. Structure of training data file in MS Excel format
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Fig. 5. (a) Error curve for ANN training (b) Error histogram for ANN training

We have built the model based on Matlab platform 
(version R2016a) for ANN training and ground surface 
subsidence prediction in underground mining areas. 
In this modular programming, we used some neural 
network functions in the Neural Network Toolbox of 
Matlab, which gave reliable results and saved program-
ming time.

The training process of the feed-forward ANN for 
subsidence prediction gave good results at all 3 stages: 
training, validation, and testing. In the first 4 cases, 
the output errors were tiny and gradually tended to 
approaching “0”, as shown in Fig. 5, a (training, validation, 
and testing error curves), Fig. 5, b (histograms of training, 
validation, and testing errors) and Fig. 6 (coefficients of 
correlation between the predicted subsidences and the 
actual subsidences).

This all showed that that the feed-forward ANN 
was successfully trained and ready for subsidence 
prediction.
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subsidence monitoring data from other subsidence 
troughs in the mining area. The more subsidence troughs 
were used to train the ANN, the better and more accurate 
subsidence prediction was produced by the ANN.

The predicted subsidences were compared with 
the monitored subsidences in the corresponding cycles. 
The accuracy of the subsidence prediction results was 
evaluated based on MAE, RMS and r values (formulas 9, 
10, and 11) for all monitoring points in the same cycle. 
The results of the accuracy evaluation for the 5 cases were 
as shown in Table 2.

Table 2
Evaluation of subsidence prediction accuracy

Case Cycle RMS (m) MAE (m) r
1 12 0.035 0.030 0.995

2
11 0.031 0.023 0.995
12 0.036 0.027 0.993

3
10 0.026 0.018 0.996
11 0.031 0.021 0.996
12 0.041 0.028 0.994

4

9 0.020 0.013 0.997
10 0.043 0.032 0.990
11 0.071 0.050 0.977
12 0.081 0.059 0.967

5

8 0.107 0.095 0.996
9 0.156 0.132 0.922

10 0.171 0.137 0.899
11 0.189 0.152 0.898
12 0.197 0.160 0.999

Case 1: the errors of subsidence prediction 
RMS = 0.035m and MAE = 0.030m were equivalent to 4.3% 
and 3.7 %, respectively, of the maximum subsidence in 
cycle 12 (which was equal to −0.814m). The coefficient 
of correlation (r) between the actual subsidence and 
the predicted subsidence in cycle 12 was 0.995. Figure 7 
shows the actual and predicted subsidence curves 
in cycle 12.

6. Evaluation of subsidence prediction accuracy
The accuracy of the subsidence prediction based on 

feed-forward ANN was evaluated using the mean absolute 
error (MAE), root mean square (RMS), and coefficient of 
correlation (r) between the monitored subsidence (actual 
subsidence) and the predicted subsidence:
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where: ηi  and ηp
i  are actual subsidence and predicted 

subsidence, respectively; ηl  and ηp
l  are mean of actual 

subsidence and predicted subsidence, respectively.

7. Results and discussion
The trained feed-forward ANN was used to predict 

the subsidence in 22 points on monitoring line P in several 
cycles. In more details, case 1 predicted the subsidence in 
cycle 12; case 2 predicted the subsidence in cycles 11 and 
12; case 3 predicted the subsidence in cycles 10, 11, and 
12; case 4 predicted the subsidence in cycles 9, 10, 11, and 
12; and case 5 predicted the subsidence in cycles 8, 9, 10, 
11, and 12.

If we let the neural network (ANN) to continuously 
predict the subsidence, and the training data are available 
for the first cycles only, the ANN will continue to predict the 
subsidence while the subsidence process may stop (when 
the mine/the coal mining stope is no longer exploited). 
We solved this problem by using training data, namely, 
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Fig. 7. Actual and predicted subsidence curves in cycle 12 (Case 1)
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Case 2: in cycle 11, the errors of subsidence prediction 
RMS = 0.031m and MAE = 0.023m were equivalent to 4.1 % 
and 3.0  %, respectively, of the maximum subsidence in 
cycle 11 (which was equal to −0.686m). The coefficient 
of correlation r = 0.995. In cycle 12, RMS = 0.036m, 
MAE  =  0.027m were equivalent to 4.4  % and 3.3  %, 
respectively, of the maximum subsidence in cycle 12. The 
correlation coefficient r = 0.993. Figure 8 shows the actual 
and predicted subsidence curves in cycles 11 and 12.

Case 3: in cycle 10, the errors of subsidence prediction 
RMS = 0.026m and MAE = 0.018m were equivalent to 3.6 % 
and 2.5  %, respectively, of the maximum subsidence in 
cycle 10 (which was equal to −0.580m). In cycle 11, RMS = 
0.031m, MAE = 0.021m were equivalent to 3.9 % and 2.6%, 
respectively, of the maximum subsidence in cycle 11. In 
cycle 12, RMS = 0.041m, MAE = 0.028m were equivalent to 
5.0 % and 3.4 %, respectively, of the maximum subsidence 
in cycle 12. The correlation coefficients in all 3 cycles 
were very close to 1, namely, 0.999, 0.996, and 0.994 in 
cycle 11, cycle 12, and cycle 13. respectively. Figure 9 
shows the actual and predicted subsidence curves in 
cycles 10, 11, and 12. Thus, in all 3 cycles, the MAE and 
RMS characterizing the accuracy of subsidence prediction 

were tiny, and the predicted and actual subsidence 
curves proved to be very close to each other. This clearly 
demonstrated that the subsidence prediction results were 
characterized by rather good accuracy.

Case 4: in cycle 9, the errors of subsidence prediction 
RMS = 0.020m and MAE = 0.013m were equivalent to 3.0 % 
and 2.0  %, respectively, of the maximum subsidence in 
cycle 9 (which was equal to −0.461m). In cycle 10, RMS 
= 0.043m and MAE = 0.032m sequentially equivalent to 
5.9 % and 4.4 % of the maximum subsidence of cycle 10. In 
cycle 11, RMS = 0.071m, MAE = 0.050m were equivalent to 
9.3 % and 6.6 %, respectively, of the maximum subsidence 
in cycle 11. In cycle 12, RMS = 0.081m, MAE = 0.059m were 
equivalent to 9.9 % and 7.3 %, respectively, of the maximum 
subsidence in cycle 12. The correlation coefficients r in 
these 4 cycles were different. The correlation coefficients 
r were 0.997 and 0.995, very close to 1, in cycles 9 and 10, 
respectively, and gradually decreased in cycles 11 and 12 
to 0.977 and 0.967, respectively.

We see that the values of MAE and RMS of the 
subsidence prediction in cycles 9 and 10 were tiny, 
but increased in cycles 11 and 12. Simultaneously, the 
correlation coefficient was high in cycle 9 and gradually 
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decreased for cycles 10, 11, and 12. These showed that the 
predicted subsidence error increases with increasing the 
period lasted from the monitoring cycles (used to train 
the ANN) time to the prediction time.

Figure 10 shows that predicted and actual subsidence 
curves are very close to each other in cycles 9, 10, and 11, 
demonstrating that the predicted subsidences have high 
accuracy. 

Analysis of the results of cases 3 and 4 showed that, 
although the number of subsidence monitoring cycles 
used to train the ANN was large (at least 8 cycles), we 
should use the ANN to predict the subsidence for the 
next 3 cycles only, and then should continue monitoring 
to update the ANN model input parameters to ensure the 
prediction accuracy.

Case 5: in cycle 8, the errors of subsidence prediction 
RMS = 0.107m and MAE = 0.095m were equivalent 
to 31.4  % and 11.8  %, respectively, of the maximum 
subsidence in cycle 8 (which was equal to −0.341m). This 
was the most accurate subsidence prediction result in case 
5, while even its prediction accuracy was much inferior of 
that in cases 1, 2, 3, and 4. The reason of this insufficient 
accuracy was that the number of monitoring cycles (used 

for the ANN training) in case 5 was only 7, less than that 
used in cases 1, 2, and 3.

In cycles 9, 10, 11, and 12, the values of RMS and 
MAE were larger than those in cycle 8. For instance, RMS 
values in cycles 9, 10, 11, and 12 were 33.8  %, 29.5  %, 
32.6  %, and 33.9  %, respectively, of the maximum 
subsidence. Similary, MAE values in cycles 9, 10, 11, and 
12 were 28.6 %, 23.6 %, 26.2%, and 27.6 %, respectively, of 
the maximum subsidence. The correlation coefficients in 
all the cycles were much lower than those in the previous 
four cases. Figure 11 shows that, in all the cycles, the 
predicted and actual subsidence curves differ markedly 
from each other.

It can be seen that if we would like to predict 
the subsidence with high accuracy, we should use at 
least 8  cycles as ANN training data. However, if many 
monitoring cycles are used as the training data, only few 
cycles further can be predicted, providing low practical 
significance of the subsidence prediction through time. 
At the same time, to improve subsidence prediction 
through time, it is expedient to use more data of other 
similar subsidence troughs in the same mining area as 
ANN training data.
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Fig.10. Actual and predicted subsidence curves in cycles 9, 10, 11, and 12 (Case 4)
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8. Conclusion
The three-layer feed-forward neural network 

applying back-propagation algorithm, the most 
common training algorithm, form a suitable ANN model 
to predict subsidence of monitoring points located on the 
surface along the main profile within a subsidence trough 
in underground coal mining area.

The quality (accuracy and reliability) of the subsidence 
prediction in the area of Mong Duong underground 
coal mine depended on the number of ANN training 
monitoring cycles as well as the time interval between 
the cycles to be predicted and the last monitoring cycle 
used to train the neural network. When the number of the 
monitoring cycles used for training the neural network 
was greater than 8, the subsidence prediction results were 
very accurate. This was demonstrated by closeness of 
the predicted subsidence curves to the actual subsidence 
curves, as well as by the corresponding values of RMS, MAE, 
and the coefficient of correlation (r) between the actual 
subsidence and the predicted subsidence. For instance, 
the maximum values of RMS and MAE were 10  % lower 
than the maximum actual subsidence, and the correlation 
coefficient was more than 0.9 (practically equal to 1).

When the number of monitoring cycles used for 
training the neural network was 7, the subsidence 
prediction results were significantly less accurate. 
This was illustrated by the deviation of the predicted 
subsidence curve from the actual subsidence curve. At 
the same time, RMS and MAE of the predicted subsidence 
in cycle 8, which provided the most accurate prediction 
result, were only 14.5  % and 11.3  %, respectively, of 
the maximum actual subsidence. The values of these 
parameters in the following cycles were even higher, 
about 30 % and 20 %, respectively. Thus, when the training 
data were provided by less than 8 cycles, the subsidence 
prediction can not ensure acceptable accuracy.

The results of the case study at Mong Duong 
underground coal mine showed that ANNs were 
effective in predicting subsidence in underground 
mining areas. However, in order to improve practicality 
of ANN subsidence prediction, one should perform 
extensive studies with a large set of ANN traning 
data, for instance, data on subsidence from many 
other subsidence troughs, as well as test other neural 
networks which can prove to be more suitable for this 
training dataset.
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