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Abstract

PM, ; air pollution is not only a significant hazard to human health in everyday life but also a dangerous
risk to workers operating in open-pit mines OPMs), especially open-pit coal mines (OPCMs). PM, . in OPCMs
can cause lung-related (e.g., pneumoconiosis, lung cancer) and cardiovascular diseases due to exposure to
airborne respirable dust over a long time. Therefore, the precise prediction of PM, . is of great importance
in the mitigation of PM, . pollution and improving air quality at the workplace. This study investigated the
meteorological conditions and PM, . emissions at an OPCM in Vietnam, in order to develop a novel intelligent
model to predict PM, . emissions and pollution. We applied functional link neural network (FLNN) to predict
PM, . pollution based on meteorological conditions (e.g., temperature, humidity, atmospheric pressure, wind
direction and speed). Instead of using traditional algorithms, the Hunger Games Search (HGS) algorithm was
used to train the FLNN model. The vital role of HGS in this study is to optimize the weights in the FLNN
model, which was finally referred to as the HGS-FLNN model. We also considered three other hybrid models
based on FLNN and metaheuristic algorithms, i.e., ABC (Artificial Bee Colony)-FLNN, GA (Genetic Algorithm)-
FLNN, and PSO (Particle Swarm Optimization)-FLNN to assess the feasibility of PM, ; prediction in OPCMs
and compare their results with those of the HGS-FLNN model. The study findings showed that HGS-FLNN was
the best model with the highest accuracy (up to 94-95 % in average) to predict PM, ; air pollution. Meanwhile,
the accuracy of the other models ranged 87 % to 90 % only. The obtained results also indicated that HGS-FLNN
was the most stable model with the lowest relative error (in the range of 0.3 to 0.5 %).
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TEXHOJIOT'MYECKASA BE3OIMNMACHOCTb B MUHEPAJIbHO-CbIPbEBOM KOMITJIEKCE
N OXPAHA OKPYXXAIOLLEW CPEAbI

Hay4Has cTaTbs

MporHosuposaHue Bbi6pocos nbinu (PM, ;) Ha yronbHbIX paspe3sax
C MOMOLLLbIO HEUPOHHOM ceTu C PYHKLIMOHANIbHBbIMU CBA3SAMM,
ONMTUMMWU3UPOBAHHOM Pa3NIMYHbIMU aNrOPUTMaMHU

C.-H. Byn! P4, X. Hryen! , K.-T. JIe! 3¢, T.-H. Jle?
! Xanotickuti yHusepcumem 20pHo20 dena u 2eonozuu, XaHoti, Bbemuam
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AHHOTauusa
3arpsisHeHMe Bo3gyxa PM, ¢ (TBepple yacTUIIbI pa3MepoMm 2,5 MK 1 MeHee) ITpe/iCTaBIIsieT c000ii He TOIBKO 3Ha-

YUTEJIbHYIO OMTACHOCTb JIJIST 3JOPOBBSI UeIOBEKA B TIOBCETHEBHOI SKM3HY, HO U OTIACHBI PUCK JIJIST pAOOUMX NP
OTKPBITBIX TOPHBIX paboTax, 0COOEHHO Ha YTOMbHBIX pa3pe3ax. PM, . Ha yTOIbHBIX pa3pe3ax MOTYT BbI3bIBATH 3a-
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6osieBaHMsI JIETKMX (HaIpuMep, THEBMOKOHMO3, PaK JIETKMX) U CEPAEUHO-COCYIVCThbIe 3a601eBaHMs 13-3a IJI-
TEeJIbHOTO BO3ZeMCTBYSI BAbIXxaeMoii mbuti. [I09TOMY TOUHOe IporHo3upoBanue PM, . MMeeT 60bIIOe 3HAUEHVEe
IUTSI MMHMMM3a1uu 3arpsisHeHust PM, ¢ ¥ yirydiiieHust KauecTBa BO3ayxa Ha pabounx MecTax. B JaHHOM mccieno-
BaHMM U3Y4YaJINCh METEOPOIIOTUYECKYE YCIOBUS U BbIOPOCH PM, ; Ha yrobHOM pa3pe3e BO BbeTHaMe C 1IeJTbI0
pa3paboTKM HOBOV MHTEUIEKTYaIbHOV MOZEJTH 1JIsI IPOTHO3MPOBaHMSI BBIOPOCOB 1 3arpsisHeHust PM, ., mpume-
HSITach HepOHHAs ceThb ¢ PyHKIMOHANIbHbIMMU CBsi3siMu (FLNN) 17151 mporHo3mupoBaHus 3arpsisHeHust PM, . B 3a-
BUCUMOCTM OT METEOPOIOTMYECKUX YCIOBU (B YaCTHOCTH, TEMITEPATYPbI, BIAKHOCTHU, aTMOC(hEpHOro AaBiie-
HVisI, HAIIPaBJIEHMS M CKOPOCTY BeTpa). BMeCTo TpaguIMOHHbIX arOpUTMOB 11t 06yueHust Mmomenu FLNN 6bit
MCII0/Ib30BaH aITOPUTM IT0MCKa MeToLoM rosofHbix urp (HGS). Baknerimast porns HGS B taHHOM MccienoBannum
3aK/II0YaeTCs B ONITMMM3alMy BecoB B Momea FLNN, kotopast 6b11a HazBaHa Mogebio HGS-FLNN. Taxske 6bL1m
pPacCMOTPEHBI TPU APYyTVie TMOPUAHbIE Mo, ocHOBaHHbIe Ha FLNN 1 MeTasBpuUCTUYECKUX aITOPUTMAX, T.€.
ABC (uckyccrBeHHas muenHasi KomoHus)-FLNN, GA (reHetmueckuii anroputm)-FLNN 1 PSO (onTumusanys
pos yactuiy)-FLNN, A1 oLleHKM BO3MOKHOCTM IIPOrHO3MpoBaHust PM, . Ha yrobHBIX paspe3ax M CpaBHEHMS UX
pesynpraToB ¢ pedynbratamyu Mogeny HGS-FLNN. UccnemoBanns nokasany, uto HGS-FLNN siBnsiercs nyuiien
MOJIeJIbIO C CaMO¥i BbICOKOJ TOYHOCTHIO IPOTHO3MPOBAHMS 3arpsisHeHMs Bosayxa PM, . (B cpegHem fo 94-95 %,
TIPY 3TOM TOYHOCTD JIPYTUX MOJIe/eil BapbupoBaiach ot 87 mo 90 %), a Takke Hanbosee CTabUIbHOV MOZIETbIO
C HaMMeHbIlIei OTHOCUTEIbHOI omnbKoii (B quamnasoue ot 0,3 mo 0,5 %).
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HeVipoHHAs CeThb ¢ QYHKIMOHAIbHBIMMU CBI3SIMU, ONTUMM3anys, paspe3 Kok Cay, nmpoBuHumsl KyaHTHMHBD,
BreTHaMm
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Introduction

“Mining is not everything, but without mining,
everything is nothing”, Max Planck, famous German
theoretical physicist, said. Practically everything,
for example, metals, cement, construction materials,
bridges, glass, towers/buildings, coal, power plans,
etc., originate initially from mining. Such activities
have a positive economic effect on development of
countries worldwide and energy security of each
country. However, mining operations also have sig-
nificant negative environmental impacts, especially
air pollutants (e.g., total suspended particulate (TSP),
inhalable dust particles with diameters that are gen-
erally 1.0, 2.5, and 10 micrometers and smaller (PM, ,
PM, ., PM,,)) [1-3] Fig. 1). Open-pit mines (OPMs)
have a more serious environmental impact compared
with underground mines because of the outdoor work
implementation. Depending on the particle size, the
adverse effects on human health and occupation-
al exposure may be more or less significant [4, 5].
Among the particles generated by OPM operations,
OPCM-produced particles are considered as the most
dangerous due to their different sizes and chemical
and mineralogical composition (e.g., coal, minerals,
organic compounds, etc.) [6].

In OPCMs, many activities can produce dust (i.e.,
PM, ), for instance, drilling, blasting, excavation,

hauling, and transportation among others. The dust
impact radius can increase due to specific meteoro-
logical conditions (e.g., wind direction and speed). In
recent years, with exponential increase in energy con-
sumption, OPCM operation has deepened to increase
coal production [8]. Deeper OPCMs are unable to use
natural ventilation efficiently. This results in availa-
bility of huge amount of thin particles in mining me-
dium. These particles can be dangerous for miners
and cause severe health impacts [9, 10].

To manage OPM dust emission, many resear-
chers have measured and analyzed the amount of PM
of different sizes, in order to evaluate the impacts of
PM depending on size. They have proposed solutions
for reductions of air pollution [11-13]. Dr. Emanue-
le Caudaet al. (NIOSH Center for Direct Reading and
Sensor Technologies) investigated the distribution
of PMs from different sources, and their findings
showed that coal mine dust emission is a significant
PM source (Fig. 2), and its forecast and control is an
actual challenge.

Another approach to solving the dust pollution
problem is estimating/forecasting the dust emission/
concentration in OPCMs. Most historical studies re-
lated to PM emissions from OPCM have focused on
estimating PM concentration in these operations
[14, 15]. In recent years, artificial intelligence (AI) has
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Cc
Fig. 1. Open-pit mines air pollution from various sources:

a - Transportation air pollution [7]; b — Shovel air pollution; ¢ — Air pollution by various operations; d — Blasting air pollution
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Fig. 2. Distribution of dust from various sources by size

Source: Nanozen (the official site). Dust specific calibrated real-time particle monitors.
https://nanozen.com/nanozette-q120/[Accessed: 03/10/2021]
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been widely applied to predict dust concentrations/
emissions in OPM. It is also recommended as a robust
tool for use in other sectors [16—20]. In the aims of
forecasting OPCM air pollution Lal B. and Tripathy
S.S. [21] applied a multiple layers perceptron (MLP)
neural network model to predict dust concentration
in an Indian OPCM. Their study confirmed the high
accuracy of the MLP model in predicting dust con-
centration. Bakhtavar E. et al. [22] also applied an ar-
tificial causality-weighted neural network (ACWNN)
model for predicting OPM blasting dust emissions.
They applied a fuzzy cognitive map to extract the
weights of inputs for the dust emission prediction
neural network. However, the study only predicted
horizontal and vertical dust distributions. Consider-
ing other activities in OPCM (i.e., drilling), Bui H.-N.
et al. [23] predicted PM10 emission by means of the
support vector regression model optimized by parti-
cle swarm optimization (PSO). Using deep learning
technique (e.g., long short-term memory — LSTM), Li
L. et al. [24] predicted the PM, . and PM,, emissions
in OPMs at RMSE (root-mean-square error) of 29.517
and 23.204, MAPE (mean absolute percentage error)
of 11.573 % and 8.537 %, respectively. Lu X. et al.
[25] proposed a hybrid PSO-GBM (Gradient Boosting
Machine) model for forecasting PM, . concentrations
based on other machine learning algorithm. High
convergence was observed in their study with the cor-
relation coefficient ranged 0.920 to 0.942.

The dust concentrations/emissions were stu-
died in terms of measurement and prediction. In
most cases they were measured and forecasted based
on single activity in OPMs. Although several Al mo-
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dels were proposed and successfully applied to fore-
casting dust emissions/concentrations, their validity
was limited due to the range of meteorological con-
ditions in different areas and the robustness of diffe-
rent intelligent models. In OPMs, PM, . was evaluated
as much more dangerous than PM10 in the working
environment. They can cause restrictive respirato-
ry disorder and diseases related to lung and cardio-
vascular system [26-28]. Therefore, in this study we
designed an air quality evaluation intelligent system
to measure PM, . emission in OPMs. We used the in-
ternet of things method for data transfer to worksta-
tions. Subsequently, a novel hybrid-neural network
model based on functional linked neural network
(FLNN) and hunger games search (HGS) algorithm,
abbreviated as HGS-FLNN model, was developed, in
order to forecast PM, . emission in a deep OPCM. It
is worth mentioning that the proposed HGS-FLNN
model was never developed and applied previous-
ly for forecasting OPM dust emission. The obtained
HGS-FLNN model results were then compared with
three other hybrid models, i.e., ABC (artificial bee
colony)-FLNN, GA (genetic algorithm)-FLNN, and
PSO-FLNN to highlight outstanding performance of
the HGS-FLNN model.

1. Data collection
In order to estimate PM, . emission in OPMs, the
Coc Sau OPCM in Vietnam was investigated (Fig. 3).
This is one of Vietnam's largest and deepest OPCMs
with a depth of 300m below sea level in July 2021'. Due

! Coc Sau Coal Company. Summary report of production
in 2021, Coc Sau. 2021 (In Vietnamese).

Fig. 3. Study area and air quality measurement stations locations
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to the irregular shape and great depth, the mine air
quality, especially in terms of PM, ., is very bad. Due
to the great depth, the mine is unable to use natural
ventilation. Therefore, the impact of high PM, . con-
centrations is significant. As described above, PM,; is
one of the most adverse particles capable of causing
occupational diseases. Hence, predicting PM, . in this
mine is aimed at finding suitable solutions to reduce
the air pollution (e.g., PM, ;) in the mine working en-
vironment.

In the aims of developing Al models to predict
PM, ., the dataset was collected using three measuring
stations (Fig. 3). Each station was designed as an air
quality measuring system capable of measuring not
only PM, . but also meteorological conditions, such as
temperature (T), atmospheric pressure (AP), humidity
(H), wind direction and speed (WD, WS). These sta-
tions measured all the parameters hourly and trans-
ferred the data to the mine’s technical department via
the 4G network. Historical studies indicated that me-
teorological conditions significantly affect OPM dust
emission [29, 30]. Therefore, they were used as the
input variables to predict PM, . in the present study.
Since the mine geometry does not change significant-
ly with deepening, the mine PM, . pollution over the
operation time is considered to be stable. It is worth
noting that WD (e.g., West, East, North, South) was
converted to numeric for solving regression problem
in this study. The dataset is presented in Table 1.
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Table 1
PM, ; emission and meteorology conditions
in the study area

Category PM,. T H AP | WD | WS
Min. 10 | 18.5  83.4 | 985.5 1 0.1
15t Qu. 23 | 22.4 | 91.7 |1,000.3| 3 24
Median 34 | 234 | 94.7 1,004.4 10 | 3.3
Mean 34.98 23.43| 94.3 |1,004.3| 8.534 | 3.285
34 Qu. 44 | 245 | 97.1 |1,008.2) 12 | 4.2
Max. 90 | 28.8 | 100 |1,023.9 16 7.5

2. HGS-FLNN model design for predicting PM, .

In the aims of predicting PM, , FLNN, a kind of
ANN, was selected as a single-layer architecture in
this study [31, 32]. The unique mechanism of this net-
work is based on the input variables and non-linear
functional expansions [33]. It can generate hidden
neurons and calculate the sum of weights. This ap-
proach enables complexity associated with regres-
sion problems [34] to be reduced. For training the
FLNN model, the simple least mean square (LMS),
back propagation (BP), or gradient descent-based
methods can be applied to update the model's weights.
The FLNN model architecture is illustrated in Figure 4.

The FLNN model (Figure 4) has many nodes ge-
nerated with a large number of weights. In connection
with this, updating weights to the network is chal-
lenging for a FLNN model with traditional training

1 A b
x:(k) ® Wi,
sinmx, (k) :9 Wiy
x,(k) cosmx, (k) :9 Wis
> sin3mx, (k) :9 Wiy
cos 3mx, (k) 29 Wis
X,(k) ® W Final
sinmx,(k) :b Way output
% cosTx,(k) 29 Was
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X (k) Sll’lTCXN(k) 59 WNZ Ofliglelt %CZ)
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cos 3mxy(k) :g Whs .
) Training rror
algorithm

Fig. 4. FLNN model architecture
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algorithms (e.g., BP, LMS) [35]. Local optima may oc-
cur while training the FLNN model with traditional
training algorithms. This can reduce FLNN model
performance in predicting PM, ..

In order to overcome this problem, optimization
algorithms can be used for network training in the
aims of optimizing the FLNN model weights. Meta-
heuristic algorithms are a good choice since they en-
able the FLNN model to reach the global optimum [36,
37]. In this study, HGS, a new metaheuristic algorithm
proposed by Yang Y. et al. [38], was selected to train
the FLNN model instead of traditional algorithms. The
HGS is highly competitive algorithm in resolving op-
timization problems [39]. It was designed on the basis
of hunger-driven activities of individuals in a swarm
while hunting prey or looking for food. The HGS details
are available in the original study [38]. The HGS flow-
chart is presented in Figure 5.

A novel hybrid AI model was designed based on
the FLNN and the HGS algorithm for predicting PM, .
in OPCMs, referred to as the HGS-FLNN model. The
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HGS algorithm was developed and used to train and
generate the weights for the FLNN model based on
hunger-driven activities. Subsequently, the weights
were updated for the network, and the model error
was calculated. While optimizing the FLNN mod-
el for predicting PM, ., RMSE was used as the loss
function for evaluating the model's performance, to
determine whether the criterion is met or not. The
proposed HGS-FLNN model framework is presented
in Figure 6.

3. Development of the HGS-FLNN model
for predicting PM,

The HGS-FLNN model for predicting OPCM PM, .
was developed as described in Figure 6. Before develop-
ing the HGS-FLNN and other models, the dataset was
randomly divided into two parts in the ratio of 4:1 for
developing and testing the models, respectively. In ad-
dition, the datasets were also normalized by scaling be-
tween 0 and 1, in order to improve the models accuracy
and minimize errors.

A 4

Initialize parameters

.| Calculate the fitness
of all individuals

A

Sort the fitness

A 4

Check the number
of hungers in the swarm

A

Calculate the hungry

!

Update weights

Check the number
of hungers in the swarm

Calculate the variation
control for all positions

Update range of activity

Update positions

No

Check

the criterion

Fig. 5. HGS optimization algorithm simplified flowchart
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[
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Update weights
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Check the number
of hungers in the swarm
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Sort the fitness Calculate the variation
control for all positions

Check the number * L
of hungers in the swarm Update range of activity

v v

Calculate the hungry Update positions
I v

Generate weights

Prior to optimizing the FLNN model, the func-
tional expansion and HGS’s parameters were estab-
lished and calibrated. The Chebyshev function was
selected as the FLNN model expansion function for
transferring the input variables data (i.e., T, H, AP,
WD, WS) to the hidden nodes. In addition, ReLu
(Rectified Linear Unit) activation function was used
to transform the data (weights) in the FLNN model
nodes. For the HGS optimizer, different numbers of
hungers were considered, e.g., 50, 100, 150, 200, 250,
300, 350, 400, 450, 500 for evaluating the optimizer
performance. The switching updating position prob-
ability was selected equal to 0.03 with the threshold
of 1000. For each hunger and its position, the HGS
created weights and then updated them to the FLNN
model. Finally, the RMSE values were calculated, and
the best model with the lowest RMSE was selected,
as shown in Figure 7. For this purpose, the Mealpy
library developed by Thieu N.V.?2 was used. The per-
formance curves show that the HGS-FLNN model
training performance and RMSE are excellent. The
next chapter is devoted to the performance testing
and evaluation.

2 Thieu N.V. A collection of the state-of-the-art meta-
heuristics algorithms in Python: Mealpy. 2020.
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Fig. 7. Optimization performance of the HGS-FLNN model
for predicting PM, .
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4. Development of other models
for predicting PM, .

PSO, GA, and ABC well-known metaheuristic al-
gorithms are widely used for resolving optimization
problems [40-48]. In this study, we hybridized FLNN
model (for predicting PM2.5 in OPCMs) with these al-
gorithms to produce so-called PSO-FLNN, GA-FLNN,
and ABC-FLNN models. It should be noted that they
are also novel hybrid models related to air pollution
prediction, especially for PM, . predicting. The PSO,
GA, and ABC basic principles are available in the fol-
lowing studies [49-61]. It is worth mentioning also
that the role of the PSO, GA, and ABC is similar to the
HGS optimizer in this study, and the development of
the PSO-FLNN, GA-FLNN, and ABC-FLNN models is
similar to that of the HGS-FLNN model.

4.1. PSO-FLNN

In order to develop the PSO-FLNN model, the
same framework with Chebyshev function and ReLu
activation function was used (similar to that used for
the HGS-FLNN model). Different numbers of swarms
were also set in interval of 50-500 similarly to those
used for the HGS-FLNN model. The PSO’s parame-
ters were set as follows: C, = 1.2, C, = 1.2, W,;, = 0.4,
Whax = 0.9. The PSO was also implemented with
1000 iterations through RMSE objective function. The
best PSO-FLNN model was then defined based on the
lowest RMSE (Fig. 8).

0.05 1

0 200 400 600 800 1000
Iterations

—— Population size = 50

—— Population size = 100
—— Population size = 150
— Population size = 200
— Population size = 250

—— Population size = 300
—— Population size = 350
— Population size = 400
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Fig. 8. Optimization performance of the PSO-FLNN model
for predicting PM, .
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4.2. GA-FLNN

In order to develop the GA-FLNN model, the
same framework with Chebyshev function and ReLu
activation function was used (similar to that used
for the HGS-FLNN and PSO-FLNN models). Diffe-
rent numbers of swarms were also set in interval of
50-500 similarly to those used for the HGS-FLNN and
PSO-FLNN models. The GA’s parameters were set as
follows: P, = 0.85, P,, = 0.05. The GA was also imple-
mented with 1000 iterations through RMSE objective
function. The best GA-FLNN model was then defined
based on the lowest RMSE (Fig. 9).
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Fig. 9. Optimization performance of the GA-FLNN model
for predicting PM,

4.3. ABC-FLNN

Similar to the PSO-FLNN and GA-FLNN models,
the ABC-FLNN model to predict PM, ; was also deve-
loped based on the same approaches. The same
framework of the initial FLNN model (i.e. the inputs,
expansion function, activation function) was used.
Next, the ABC optimizer implemented global search
to provide the set the number of weights. Subsequent-
ly, they were updated to the initial FLNN model and
the error (i.e., RMSE) was calculated. Different num-
bers of bees were also set equal to 50-500, as those
used for the HGS-FLNN, PSO-FLNN, and GA-FLNN
models. The size of neighborhood for the elite and
other bees (as the ABC’s parameter) was set at 16.4.
The ABC algorithm optimized the initial FLNN model
with 1000 iterations through the RMSE objective func-
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tion, as shown in Figure 10. Ultimately, the best ABC-
FLNN model was defined based on the lowest RMSE.
Training curves in Figure 10 show that the learning
performance of the ABC-FLNN model is good. The
next chapter describes the performance testing and
evaluation.
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Fig. 10. Optimization performance of the ABC-FLNN model
for predicting PM, .

5. Findings and discussion

Figures 5-8 demonstrate that the HGS-FLNN,
ABC-FLNN, PSO-FLNN, and GA-FLNN models are
well-trained with good convergence. However, it is dif-
ficult to indicate which model is the best for predicting
PM, . using these Figures only. We used statistical indi-
ces, such as MAE, RMSE, R?, and MAPE to estimate the
accuracy of the developed hybrid FLNN-based models.
They are useful not only in estimating the accuracy of
the models but also for determining the properties of
the developed models (e.g., overfitting, underfitting).
The results are presented in Table 2.
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Table 2 shows that the HGS-FLNN model is ob-
viously superior to the other models. In the HGS-
FLNN model, the MAE ranges 1.405 to 1.497 only,
whereas the ABC-FLNN, PSO-FLNN, and GA-FLNN
models provided higher errors (MAE of 1.776, 2.326,
3.693, respectively, in the training dataset, and MAE
of 2.246, 2.453, 3.602, respectively, in the testing
dataset. Similarly to MAE, the RMSE values in the
HGS-FLNN model amounting to 2.652 and 2.700 (in
training and testing phases, respectively) are lower
than those in other models. The training and testing
phases of the other models yielded higher RMSE va-
lues (ranged 3.298-5.938 and 3.857-5.672, respec-
tively). It is remarkable that MAPE was 0.054 only in
the HGS-FLNN model training and 0.057 in testing of
the corresponding dataset. In other words, the MAPE
in the HGS-FLNN model-based predicting PM, .
ranged at 5.4-5.7 % only taking into account the me-
teorological conditions.

With regard to the level of regression in the
models (i.e., correlation factor R?), the results also in-
dicated that the HGS-FLNN model demonstrated the
highest R?in both phases. Furthermore, as observed,
the developed models did not demonstrate overfitting.
In other words, the training and testing phases showed
practically similar accuracy of the results on predic-
ting PM2.5 in this study. The visualization of the
models regression levels in Figures 9 and 10 shows
the best correlation between the predicted and mea-
sured data in the HGS-FLNN model, when compared
to the other models. Whereas the correlation in the
HGS-FLNN model is perfect, the other models (i.e.,
ABC-FLNN, PSO-FLNN, and GA-FLNN) demonstrate
lower correlation, especially the GA-FLNN model. The
GA-FLNN model demonstrated the lowest performance
in predicting PM, in this study. The PSO-FLNN and
ABC-FLNN models demonstrated better correlation/
performance than the GA-FLNN model.

Turning to the FLNN-based models training per-
formance (Figures 5-8), and taking a closer look at the
performance lines and RMSE values, one can see that
the HGS-FLNN model training performance is much
better than that of the other models with lower RMSE
values. This finding confirms the results presented in
Table 2 and Figures 9-10. In other words, this con-

Statistical indices for examination of the FLNN-based models for predicting PM, , fable?
Model Training Testing
MAE RMSE R? MAPE MAE RMSE R? MAPE
HGS-FLNN 1.405 2.652 0.967 0.054 1.497 2.700 0.966 0.057
ABC-FLNN 1.776 3.298 0.949 0.070 2.246 3.857 0.931 0.097
PSO-FLNN 2.326 3.968 0.930 0.087 2.453 3.962 0.933 0.091
GA-FLNN 3.693 5.938 0.837 0.125 3.602 5.672 0.852 0.129
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firms that the HGS algorithm performs better than the
other algorithms (i.e., ABC, PSO, and GA) in this case.
This statement does not mean that the HGS algorithm
is better than the ABC, PSO, and GA algorithms in all
cases. It depends on datasets used in each case study.
Nevertheless, the HGS algorithm is considered as the
best for predicting PM, . in the OPCM at least in the
present study. In order to measure the accuracy of the
HGS-FLNN model in practice, the relative error (RE)
was calculated, as shown in Figure 13. As can be seen,
in the HGS-FLNN model, RE is very small. Most of the
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RE values ranges —0.3 to 0.5. Only one data point is out
of this range, but this RE value is also low at 0.699. At
the same time, the other models demonstrated higher
REs, ranged —0.63 to 2.194. Notice that the ABC-FLNN
model statistical indices (Table 2) indicated its better
performance, when compared to the PSO-FLNN and
GA-FLNN models. However, the ABC-FLNN model pro-
vided some data points with the highest RE, as shown
in Figure 13. Finally, this study allowed a confident
conclusion to be made that the HGS-FLNN model was
the best technique to predict PM, ..
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Fig. 11. Correlation between the predicted and measured data in the FLNN models (training dataset) under swarm-based
algorithms optimization
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Conclusion

PM, . in OPCMs is a serious occupational hazard
to miners’ health. It can cause respiratory, lung, cardi-
ovascular, and cancer diseases. Historical reports indi-
cate that increasing air PM2.5 pollution concentration
by 10 pg/m?® results in an increase in lung cancer rate
by 36 %. Meanwhile, OPCM PM, . emissions measured
in this study ranged 10 to 90 ug/m3. These are really
hazardous levels for the health of miners. Therefore,
accurate air PM, . pollution prediction is of crucial im-
portance in terms of occupational health and selecting

elSSN 2500-0632

https://mst.misis.ru/

Bui X.-N. et al. Forecasting PM, s emissions in open-pit mines...

solutions to reduce OPCM PM, . pollution. This study
proposed the novel HGS-FLNN model for predicting
PM, . pollution in OPCMs with an average accuracy of
94-95 %. In addition, three other hybrid models were
developed, reviewed, and evaluated in terms of PM, .
prediction. However, their accuracy proved in the range
of 87 % to 90 % only. The obtained results also indi-
cated that the HGS-FLNN model was the most stable
model with a very low relative error. It can be used in
mining engineering to predict and control PM, . pollu-
tion in OPCMs.
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