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Abstract
PM2.5 air pollution is not only a significant hazard to human health in everyday life but also a dangerous 
risk to workers operating in open-pit mines OPMs), especially open-pit coal mines (OPCMs). PM2.5 in OPCMs 
can cause lung-related (e.g., pneumoconiosis, lung cancer) and cardiovascular diseases due to exposure to 
airborne respirable dust over a long time. Therefore, the precise prediction of PM2.5 is of great importance 
in the mitigation of PM2.5 pollution and improving air quality at the workplace. This study investigated the 
meteorological conditions and PM2.5 emissions at an OPCM in Vietnam, in order to develop a novel intelligent 
model to predict PM2.5 emissions and pollution. We applied functional link neural network (FLNN) to predict 
PM2.5 pollution based on meteorological conditions (e.g., temperature, humidity, atmospheric pressure, wind 
direction and speed). Instead of using traditional algorithms, the Hunger Games Search (HGS) algorithm was 
used to train the FLNN model. The vital role of HGS in this study is to optimize the weights in the FLNN 
model, which was finally referred to as the HGS-FLNN model. We also considered three other hybrid models 
based on FLNN and metaheuristic algorithms, i.e., ABC (Artificial Bee Colony)-FLNN, GA (Genetic Algorithm)-
FLNN, and PSO (Particle Swarm Optimization)-FLNN to assess the feasibility of PM2.5 prediction in OPCMs 
and compare their results with those of the HGS-FLNN model. The study findings showed that HGS-FLNN was 
the best model with the highest accuracy (up to 94–95 % in average) to predict PM2.5 air pollution. Meanwhile, 
the accuracy of the other models ranged 87 % to 90 % only. The obtained results also indicated that HGS-FLNN 
was the most stable model with the lowest relative error (in the range of −0.3 to 0.5 %).
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Аннотация
Загрязнение воздуха PM2.5 (твердые частицы размером 2,5 мк и менее) представляет собой не только зна-
чительную опасность для здоровья человека в повседневной жизни, но и опасный риск для рабочих при 
открытых горных работах, особенно на угольных разрезах. PM2.5 на угольных разрезах могут вызывать за-
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болевания легких (например, пневмокониоз, рак легких) и сердечно-сосудистые заболевания из-за дли-
тельного воздействия вдыхаемой пыли. Поэтому точное прогнозирование PM2.5 имеет большое значение 
для минимизации загрязнения PM2.5 и улучшения качества воздуха на рабочих местах. В данном исследо-
вании изучались метеорологические условия и выбросы PM2.5 на угольном разрезе во Вьетнаме с целью 
разработки новой интеллектуальной модели для прогнозирования выбросов и загрязнения PM2.5, приме-
нялась нейронная сеть с функциональными связями (FLNN) для прогнозирования загрязнения PM2.5 в за-
висимости от метеорологических условий (в частности, температуры, влажности, атмосферного давле-
ния, направления и скорости ветра). Вместо традиционных алгоритмов для обучения модели FLNN был 
использован алгоритм поиска методом голодных игр (HGS). Важнейшая роль HGS в данном исследовании 
заключается в оптимизации весов в модели FLNN, которая была названа моделью HGS-FLNN. Также были 
рассмотрены три другие гибридные модели, основанные на FLNN и метаэвристических алгоритмах, т.е. 
ABC (искусственная пчелиная колония)-FLNN, GA (генетический алгоритм)-FLNN и PSO (оптимизация 
роя частиц)-FLNN, для оценки возможности прогнозирования PM2.5 на угольных разрезах и сравнения их 
результатов с результатами модели HGS-FLNN. Исследования показали, что HGS-FLNN является лучшей 
моделью с самой высокой точностью прогнозирования загрязнения воздуха PM2.5 (в среднем до 94–95 %, 
при этом точность других моделей варьировалась от 87 до 90 %), а также наиболее стабильной моделью 
с наименьшей относительной ошибкой (в диапазоне от −0,3 до 0,5 %).
Ключевые слова
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Introduction
“Mining is not everything, but without mining, 

everything is nothing”, Max Planck, famous German 
theoretical physicist, said. Practically everything, 
for example, metals, cement, construction materials, 
bridges, glass, towers/buildings, coal, power plans, 
etc., originate initially from mining. Such activities 
have a positive economic effect on development of 
countries worldwide and energy security of each 
country. However, mining operations also have sig-
nificant negative environmental impacts, especially 
air pollutants (e.g., total suspended particulate (TSP), 
inhalable dust particles with diameters that are gen-
erally 1.0, 2.5, and 10 micrometers and smaller (PM1.0, 
PM2.5, PM10)) [1–3] Fig. 1). Open-pit mines (OPMs) 
have a more serious environmental impact compared 
with underground mines because of the outdoor work 
implementation. Depending on the particle size, the 
adverse effects on human health and occupation-
al exposure may be more or less significant [4, 5]. 
Among the particles generated by OPM operations, 
OPCM-produced particles are considered as the most 
dangerous due to their different sizes and chemical 
and mineralogical composition (e.g., coal, minerals, 
organic compounds, etc.) [6]. 

In OPCMs, many activities can produce dust (i.e., 
PM2.5), for instance, drilling, blasting, excavation, 

hauling, and transportation among others. The dust 
impact radius can increase due to specific meteoro-
logical conditions (e.g., wind direction and speed). In 
recent years, with exponential increase in energy con-
sumption, OPCM operation has deepened to increase 
coal production [8]. Deeper OPCMs are unable to use 
natural ventilation efficiently. This results in availa-
bility of huge amount of thin particles in mining me-
dium. These particles can be dangerous for miners 
and cause severe health impacts [9, 10].

To manage OPM dust emission, many resear- 
chers have measured and analyzed the amount of PM 
of different sizes, in order to evaluate the impacts of 
PM depending on size. They have proposed solutions 
for reductions of air pollution [11–13]. Dr. Emanue-
le Caudaet al. (NIOSH Center for Direct Reading and 
Sensor Technologies) investigated the distribution 
of PMs from different sources, and their findings 
showed that coal mine dust emission is a significant 
PM source (Fig. 2), and its forecast and control is an 
actual challenge.

Another approach to solving the dust pollution 
problem is estimating/forecasting the dust emission/
concentration in OPCMs. Most historical studies re-
lated to PM emissions from OPCM have focused on 
estimating PM concentration in these operations 
[14, 15]. In recent years, artificial intelligence (AI) has 
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 c d
Fig. 1. Open-pit mines air pollution from various sources:

a – Transportation air pollution [7]; b – Shovel air pollution; c – Air pollution by various operations; d – Blasting air pollution
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Fig. 2. Distribution of dust from various sources by size
Source: Nanozen (the official site). Dust specific calibrated real-time particle monitors.  

https://nanozen.com/nanozette-q120/[Accessed: 03/10/2021]
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been widely applied to predict dust concentrations/
emissions in OPM. It is also recommended as a robust 
tool for use in other sectors [16–20]. In the aims of 
forecasting OPCM air pollution Lal B. and Tripathy 
S.S. [21] applied a multiple layers perceptron (MLP) 
neural network model to predict dust concentration 
in an Indian OPCM. Their study confirmed the high 
accuracy of the MLP model in predicting dust con-
centration. Bakhtavar E. et al. [22] also applied an ar-
tificial causality-weighted neural network (ACWNN) 
model for predicting OPM blasting dust emissions. 
They applied a fuzzy cognitive map to extract the 
weights of inputs for the dust emission prediction 
neural network. However, the study only predicted 
horizontal and vertical dust distributions.  Consider-
ing other activities in OPCM (i.e., drilling), Bui H.-N. 
et al. [23] predicted PM10 emission by means of the 
support vector regression model optimized by parti-
cle swarm optimization (PSO). Using deep learning 
technique (e.g., long short-term memory – LSTM), Li 
L. et al. [24] predicted the PM2.5 and PM10 emissions 
in OPMs at RMSE (root-mean-square error) of 29.517 
and 23.204, MAPE (mean absolute percentage error) 
of 11.573 % and 8.537 %, respectively. Lu X. et al. 
[25] proposed a hybrid PSO-GBM (Gradient Boosting 
Machine) model for forecasting PM2.5 concentrations 
based on other machine learning algorithm. High 
convergence was observed in their study with the cor-
relation coefficient ranged 0.920 to 0.942.

The dust concentrations/emissions were stu-
died in terms of measurement and prediction. In 
most cases they were measured and forecasted based 
on single activity in OPMs. Although several AI mo-

dels were proposed and successfully applied to fore-
casting dust emissions/concentrations, their validity 
was limited due to the range of meteorological con-
ditions in different areas and the robustness of diffe- 
rent intelligent models. In OPMs, PM2.5 was evaluated 
as much more dangerous than PM10 in the working 
environment. They can cause restrictive respirato-
ry disorder and diseases related to lung and cardio-
vascular system [26–28]. Therefore, in this study we 
designed an air quality evaluation intelligent system 
to measure PM2.5 emission in OPMs. We used the in-
ternet of things method for data transfer to worksta-
tions. Subsequently, a novel hybrid-neural network 
model based on functional linked neural network 
(FLNN) and hunger games search (HGS) algorithm, 
abbreviated as HGS-FLNN model, was developed, in 
order to forecast PM2.5 emission in a deep OPCM. It 
is worth mentioning that the proposed HGS-FLNN 
model was never developed and applied previous-
ly for forecasting OPM dust emission. The obtained 
HGS-FLNN model results were then compared with 
three other hybrid models, i.e., ABC (artificial bee 
colony)-FLNN, GA (genetic algorithm)-FLNN, and 
PSO-FLNN to highlight outstanding performance of 
the HGS-FLNN model.

1. Data collection
In order to estimate PM2.5 emission in OPMs, the 

Coc Sau OPCM in Vietnam was investigated (Fig. 3). 
This is one of Vietnam's largest and deepest OPCMs 
with a depth of 300m below sea level in July 20211. Due 

1 Coc Sau Coal Company. Summary report of production 
in 2021, Coc Sau. 2021 (In Vietnamese).
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to the irregular shape and great depth, the mine air 
quality, especially in terms of PM2.5, is very bad. Due 
to the great depth, the mine is unable to use natural 
ventilation. Therefore, the impact of high PM2.5 con-
centrations is significant. As described above, PM2.5 is 
one of the most adverse particles capable of causing 
occupational diseases. Hence, predicting PM2.5 in this 
mine is aimed at finding suitable solutions to reduce 
the air pollution (e.g., PM2.5) in the mine working en-
vironment.

In the aims of developing AI models to predict 
PM2.5, the dataset was collected using three measuring 
stations (Fig. 3). Each station was designed as an air 
quality measuring system capable of measuring not 
only PM2.5 but also meteorological conditions, such as 
temperature (T), atmospheric pressure (AP), humidity 
(H), wind direction and speed (WD, WS). These sta-
tions measured all the parameters hourly and trans-
ferred the data to the mine’s technical department via 
the 4G network. Historical studies indicated that me-
teorological conditions significantly affect OPM dust 
emission [29, 30]. Therefore, they were used as the 
input variables to predict PM2.5 in the present study. 
Since the mine geometry does not change significant-
ly with deepening, the mine PM2.5 pollution over the 
operation time is considered to be stable. It is worth 
noting that WD (e.g., West, East, North, South) was 
converted to numeric for solving regression problem 
in this study. The dataset is presented in Table 1.

Table 1
PM2.5 emission and meteorology conditions  

in the study area

Category PM2.5 T H AP WD WS
Min. 10 18.5 83.4 985.5 1 0.1
1st Qu. 23 22.4 91.7 1,000.3 3 2.4
Median 34 23.4 94.7 1,004.4 10 3.3
Mean 34.98 23.43 94.3 1,004.3 8.534 3.285
3rd Qu. 44 24.5 97.1 1,008.2 12 4.2
Max. 90 28.8 100 1,023.9 16 7.5

2. HGS-FLNN model design for predicting PM2.5
In the aims of predicting PM2.5, FLNN, a kind of 

ANN, was selected as a single-layer architecture in 
this study [31, 32]. The unique mechanism of this net-
work is based on the input variables and non-linear 
functional expansions [33]. It can generate hidden 
neurons and calculate the sum of weights. This ap-
proach enables complexity associated with regres-
sion problems [34] to be reduced. For training the 
FLNN model, the simple least mean square (LMS), 
back propagation (BP), or gradient descent-based  
methods can be applied to update the model's weights. 
The FLNN model architecture is illustrated in Figure 4.

The FLNN model (Figure 4) has many nodes ge- 
nerated with a large number of weights. In connection 
with this, updating weights to the network is chal-
lenging for a FLNN model with traditional training  
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algorithms (e.g., BP, LMS) [35]. Local optima may oc-
cur while training the FLNN model with traditional 
training algorithms. This can reduce FLNN model 
performance in predicting PM2.5. 

In order to overcome this problem, optimization 
algorithms can be used for network training in the 
aims of optimizing the FLNN model weights. Meta-
heuristic algorithms are a good choice since they en-
able the FLNN model to reach the global optimum [36, 
37]. In this study, HGS, a new metaheuristic algorithm 
proposed by Yang Y. et al. [38], was selected to train 
the FLNN model instead of traditional algorithms. The 
HGS is highly competitive algorithm in resolving op-
timization problems [39]. It was designed on the basis 
of hunger-driven activities of individuals in a swarm 
while hunting prey or looking for food. The HGS details 
are available in the original study [38]. The HGS flow-
chart is presented in Figure 5.

A novel hybrid AI model was designed based on 
the FLNN and the HGS algorithm for predicting PM2.5 
in OPCMs, referred to as the HGS-FLNN model. The 

Initialize parameters

Calculate the fitness
of all individuals

Start

Update weights

Check the number
of hungers in the swarm

Sort the fitness

Check the number
of hungers in the swarm

Calculate the variation
control for all positions

Calculate the hungry

Update range of activity

Update positions

Check
the criterion

End

Yes

No

Fig. 5. HGS optimization algorithm simplified flowchart

HGS algorithm was developed and used to train and 
generate the weights for the FLNN model based on 
hunger-driven activities. Subsequently, the weights 
were updated for the network, and the model error 
was calculated. While optimizing the FLNN mod-
el for predicting PM2.5, RMSE was used as the loss 
function for evaluating the model's performance, to 
determine whether the criterion is met or not. The 
proposed HGS-FLNN model framework is presented 
in Figure 6.

3. Development of the HGS-FLNN model 
for predicting PM2.5

The HGS-FLNN model for predicting OPCM PM2.5 
was developed as described in Figure 6. Before develop-
ing the HGS-FLNN and other models, the dataset was 
randomly divided into two parts in the ratio of 4:1 for 
developing and testing the models, respectively. In ad-
dition, the datasets were also normalized by scaling be-
tween 0 and 1, in order to improve the models accuracy 
and minimize errors.
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Fig. 6. Proposed HGS-FLNN model for predicting PM2.5 in OPMs

Prior to optimizing the FLNN model, the func-
tional expansion and HGS’s parameters were estab-
lished and calibrated. The Chebyshev function was 
selected as the FLNN model expansion function for 
transferring the input variables data (i.e., T, H, AP, 
WD, WS) to the hidden nodes. In addition, ReLu 
(Rectified Linear Unit) activation function was used 
to transform the data (weights) in the FLNN model 
nodes. For the HGS optimizer, different numbers of 
hungers were considered, e.g., 50, 100, 150, 200, 250, 
300, 350, 400, 450, 500 for evaluating the optimizer 
performance. The switching updating position prob-
ability was selected equal to 0.03 with the threshold 
of 1000. For each hunger and its position, the HGS 
created weights and then updated them to the FLNN 
model. Finally, the RMSE values were calculated, and 
the best model with the lowest RMSE was selected, 
as shown in Figure 7. For this purpose, the Mealpy 
library developed by Thieu N.V.2 was used. The per-
formance curves show that the HGS-FLNN model 
training performance and RMSE are excellent. The 
next chapter is devoted to the performance testing 
and evaluation.

2 Thieu N.V. A collection of the state-of-the-art meta-
heuristics algorithms in Python: Mealpy. 2020.
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4. Development of other models  
for predicting PM2.5

PSO, GA, and ABC well-known metaheuristic al-
gorithms are widely used for resolving optimization 
problems [40–48]. In this study, we hybridized FLNN 
model (for predicting PM2.5 in OPCMs) with these al-
gorithms to produce so-called PSO-FLNN, GA-FLNN, 
and ABC-FLNN models. It should be noted that they 
are also novel hybrid models related to air pollution 
prediction, especially for PM2.5 predicting. The PSO, 
GA, and ABC basic principles are available in the fol-
lowing studies [49–61]. It is worth mentioning also 
that the role of the PSO, GA, and ABC is similar to the 
HGS optimizer in this study, and the development of 
the PSO-FLNN, GA-FLNN, and ABC-FLNN models is 
similar to that of the HGS-FLNN model.

4.1. PSO-FLNN
In order to develop the PSO-FLNN model, the 

same framework with Chebyshev function and ReLu 
activation function was used (similar to that used for 
the HGS-FLNN model). Different numbers of swarms 
were also set in interval of 50–500 similarly to those 
used for the HGS-FLNN model. The PSO’s parame-
ters were set as follows: C1 = 1.2, C2 = 1.2, Wmin = 0.4, 
Wmax  =  0.9. The PSO was also implemented with 
1000 iterations through RMSE objective function. The 
best PSO-FLNN model was then defined based on the 
lowest RMSE (Fig. 8).

4.2. GA-FLNN
In order to develop the GA-FLNN model, the 

same framework with Chebyshev function and ReLu 
activation function was used (similar to that used 
for the HGS-FLNN and PSO-FLNN models). Diffe- 
rent numbers of swarms were also set in interval of 
50–500 similarly to those used for the HGS-FLNN and 
PSO-FLNN models. The GA’s parameters were set as 
follows: Pc = 0.85, Pm = 0.05. The GA was also imple-
mented with 1000 iterations through RMSE objective 
function. The best GA-FLNN model was then defined 
based on the lowest RMSE (Fig. 9).
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Fig. 9. Optimization performance of the GA-FLNN model 
for predicting  PM2.5

4.3. ABC-FLNN
Similar to the PSO-FLNN and GA-FLNN models, 

the ABC-FLNN model to predict PM2.5 was also deve- 
loped based on the same approaches. The same 
framework of the initial FLNN model (i.e. the inputs, 
expansion function, activation function) was used. 
Next, the ABC optimizer implemented global search 
to provide the set the number of weights. Subsequent-
ly, they were updated to the initial FLNN model and 
the error (i.e., RMSE) was calculated. Different num-
bers of bees were also set equal to 50–500, as those 
used for the HGS-FLNN, PSO-FLNN, and GA-FLNN  
models. The size of neighborhood for the elite and 
other bees (as the ABC’s parameter) was set at 16.4. 
The ABC algorithm optimized the initial FLNN model 
with 1000 iterations through the RMSE objective func-
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Fig. 8. Optimization performance of the PSO-FLNN model 
for predicting PM2.5
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tion, as shown in Figure 10. Ultimately, the best ABC-
FLNN model was defined based on the lowest RMSE. 
Training curves in Figure 10 show that the learning 
performance of the ABC-FLNN model is good. The 
next chapter describes the performance testing and 
evaluation.
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Fig. 10. Optimization performance of the ABC-FLNN model 
for predicting PM2.5

5. Findings and discussion
Figures 5–8 demonstrate that the HGS-FLNN, 

ABC-FLNN, PSO-FLNN, and GA-FLNN models are 
well-trained with good convergence. However, it is dif-
ficult to indicate which model is the best for predicting 
PM2.5 using these Figures only. We used statistical indi-
ces, such as MAE, RMSE, R2, and MAPE to estimate the 
accuracy of the developed hybrid FLNN-based models. 
They are useful not only in estimating the accuracy of 
the models but also for determining the properties of 
the developed models (e.g., overfitting, underfitting). 
The results are presented in Table 2.

Table 2 shows that the HGS-FLNN model is ob-
viously superior to the other models. In the HGS-
FLNN model, the MAE ranges 1.405 to 1.497 only, 
whereas the ABC-FLNN, PSO-FLNN, and GA-FLNN 
models provided higher errors (MAE of 1.776, 2.326, 
3.693, respectively, in the training dataset, and MAE 
of 2.246, 2.453, 3.602, respectively, in the testing 
dataset. Similarly to MAE, the RMSE values in the 
HGS-FLNN model amounting to 2.652 and 2.700 (in 
training and testing phases, respectively) are lower 
than those in other models. The training and testing 
phases of the other models yielded higher RMSE va- 
lues (ranged 3.298–5.938 and 3.857–5.672, respec-
tively). It is remarkable that MAPE was 0.054 only in 
the HGS-FLNN model training and 0.057 in testing of 
the corresponding dataset. In other words, the MAPE 
in the HGS-FLNN model-based predicting PM2.5 
ranged at 5.4–5.7 % only taking into account the me-
teorological conditions.

With regard to the level of regression in the  
models (i.e., correlation factor R2), the results also in-
dicated that the HGS-FLNN model demonstrated the 
highest R2 in both phases. Furthermore, as observed, 
the developed models did not demonstrate overfitting. 
In other words, the training and testing phases showed 
practically similar accuracy of the results on predic-
ting PM2.5 in this study. The visualization of the  
models regression levels in Figures 9 and 10 shows 
the best correlation between the predicted and mea-
sured data in the HGS-FLNN model, when compared 
to the other models. Whereas the correlation in the  
HGS-FLNN model is perfect, the other models (i.e., 
ABC-FLNN, PSO-FLNN, and GA-FLNN) demonstrate 
lower correlation, especially the GA-FLNN model. The 
GA-FLNN model demonstrated the lowest performance 
in predicting PM2.5 in this study. The PSO-FLNN and 
ABC-FLNN models demonstrated better correlation/
performance than the GA-FLNN model.

Turning to the FLNN-based models training per-
formance (Figures 5–8), and taking a closer look at the 
performance lines and RMSE values, one can see that 
the HGS-FLNN model training performance is much 
better than that of the other models with lower RMSE 
values. This finding confirms the results presented in 
Table 2 and Figures 9–10. In other words, this con-

Table 2
Statistical indices for examination of the FLNN-based models for predicting PM2.5

Model
Training Testing

MAE RMSE R2 MAPE MAE RMSE R2 MAPE

HGS-FLNN 1.405 2.652 0.967 0.054 1.497 2.700 0.966 0.057

ABC-FLNN 1.776 3.298 0.949 0.070 2.246 3.857 0.931 0.097

PSO-FLNN 2.326 3.968 0.930 0.087 2.453 3.962 0.933 0.091

GA-FLNN 3.693 5.938 0.837 0.125 3.602 5.672 0.852 0.129
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Fig. 11. Correlation between the predicted and measured data in the FLNN models (training dataset) under swarm-based 
algorithms optimization

firms that the HGS algorithm performs better than the 
other algorithms (i.e., ABC, PSO, and GA) in this case. 
This statement does not mean that the HGS algorithm 
is better than the ABC, PSO, and GA algorithms in all 
cases. It depends on datasets used in each case study. 
Nevertheless, the HGS algorithm is considered as the 
best for predicting PM2.5 in the OPCM at least in the 
present study. In order to measure the accuracy of the 
HGS-FLNN model in practice, the relative error (RE) 
was calculated, as shown in Figure 13. As can be seen, 
in the HGS-FLNN model, RE is very small. Most of the 

RE values ranges −0.3 to 0.5. Only one data point is out 
of this range, but this RE value is also low at 0.699. At 
the same time, the other models demonstrated higher 
REs, ranged −0.63 to 2.194. Notice that the ABC-FLNN 
model statistical indices (Table 2) indicated its better 
performance, when compared to the PSO-FLNN and 
GA-FLNN models. However, the ABC-FLNN model pro-
vided some data points with the highest RE, as shown 
in Figure 13. Finally, this study allowed a confident 
conclusion to be made that the HGS-FLNN model was 
the best technique to predict PM2.5.
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Conclusion
PM2.5 in OPCMs is a serious occupational hazard 

to miners’ health. It can cause respiratory, lung, cardi-
ovascular, and cancer diseases. Historical reports indi-
cate that increasing air PM2.5 pollution concentration 
by 10 μg/m3 results in an increase in lung cancer rate 
by 36 %. Meanwhile, OPCM PM2.5 emissions measured 
in this study ranged 10 to 90 μg/m3. These are really 
hazardous levels for the health of miners. Therefore, 
accurate air PM2.5 pollution prediction is of crucial im-
portance in terms of occupational health and selecting 

solutions to reduce OPCM PM2.5 pollution. This study 
proposed the novel HGS-FLNN model for predicting 
PM2.5 pollution in OPCMs with an average accuracy of 
94–95 %. In addition, three other hybrid models were 
developed, reviewed, and evaluated in terms of PM2.5 
prediction. However, their accuracy proved in the range 
of 87 % to 90 % only. The obtained results also indi-
cated that the HGS-FLNN model was the most stable 
model with a very low relative error. It can be used in 
mining engineering to predict and control PM2.5 pollu-
tion in OPCMs.
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