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Abstract
A significant portion of mineral deposits developed by open-pit mining is opened to the full depth by road 
transport ramps without the use of combined transport. In most cases, this is dictated by the high rate 
of a pit deepening and multi-stage development. In this study, the energy intensity of rock mass (RoM) 
haulage from the working zone of a pit to the surface is considered at several hierarchical levels. Mineframe 
software was used to study 3D-models of open pits with different slope angles in order to test the method 
of analytical calculation of a pit volume that allowed ensuring accuracy under a wide range of mining 
conditions. The findings of the research are as follows: with an increase in the pit bottom diameter, the 
zone of stabilization of rock mass lifting (haulage) height shifts to greater target depths. An increase in 
the pit slope angles entails shifting the weighted average height to deeper elevations. By increasing the pit 
target depth, combined modes of transport become more economical in comparison with dump trucks due 
to an increase in the total volume of rock mass. Depending on the comparison purpose, it was proposed 
to use different types of energy intensity. For a broad estimation of the rationality of the pair “scheme of 
opening – mode of transport” for open pits, the ratio of potential energy intensities of rock mass haulage 
of a considered option of a pit opening and its basic option without transport berms was used. The ratio of 
potential energy intensities as a function of a pit depth was determined. The values of total energy intensity 
of rock mass haulage from a pit to the surface were also established.
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Аннотация
Значительная часть месторождений полезных ископаемых, разрабатываемых открытым способом, 
вскрывается автомобильными транспортными съездами на всю глубину без использования комби-
нированного транспорта. В большинстве случаев это связано с высокой скоростью снижения уровня 
горных работ и многоэтапной разработкой. Методы исследований энергоемкости транспортирования 
горной массы из рабочей зоны карьера на поверхность рассматриваются в несколько иерархических 
уровней. Для исследования 3D-моделей карьеров с различными углами откоса использовано программ-
ное обеспечение Mineframe с целью забазировать методику аналитического расчета объема карьера, 
что позволило обеспечить точность при широком охвате диапазона горнотехнических условий. При 
увеличении диаметра дна карьера зона стабилизации высоты подъема смещается к большим конеч-
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ным глубинам, увеличение угла откоса бортов карьера влечет за собой смещение средневзвешенной 
высоты в глубину, с ростом конечной глубины карьера комбинированные виды транспорта становятся 
более экономичными в сравнении с автомобильным за счет увеличения суммарного объема горной 
массы. В зависимости от цели сравнения предложено использовать различные виды энергоемкости, 
для укрупненной оценки рациональности пары «схемы вскрытия – вид транспорта» для карьеров воз-
можно использовать отношение потенциальных энергоемкостей перемещения горной массы рассма-
триваемого варианта вскрытия карьера и его базовой версии без транспортных берм, установлены за-
кономерности изменения отношения потенциальных энергоемкостей от глубины карьера, определены 
значения полной энергоемкости транспортирования горной массы из карьера до поверхности комби-
нированными видами транспорта.
Ключевые слова
энергоёмкость, транспортная система карьера, глубокий карьер, схема вскрытия, транспортная берма, 
карьерные автосамосвалы, угол откоса бортов
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Introduction
A significant portion of mineral deposits 

developed by open-pit mining is opened to the 
full depth by road transport ramps without the use 
of combined transport. As a rule, this is dictated 
by the high rate of a pit deepening, multi-stage 
development (up to 5–6  stages with a cutback at 
full height at each stage) that does not allow more 
economical, but capital-intensive modes of transport 
to be implemented. At the same time, the effective 
development of these deposits with the fullest 
possible extraction of reserves is an urgent task [1, 2].

The volume of rock mass within the envelope 
of a pit depends significantly on its depth and size 

in plan view, and, with an increase in its depth, the 
volume increases parabolically (Fig. 1). At the same 
time, the distribution of these volumes by bench is 
uneven. Deepening leads to a decrease in the volume 
of each underlying horizon, while the distance of 
haulage increases [3]. The final figures of haulage 
work while developing a deposit by a  deep round 
pit is described by an ascending-and-descending 
curve. For instance, Fig. 1, b shows a graph built 
without taking into account annual smoothing 
production volumes. It can be seen that the peak 
value and intensity of the change in the tonne-km 
work significantly depend on the slope angles of the 
pit walls.
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Fig. 1. Dependence of the volume of rock mass and haulage work within a round-shaped pit envelope  

on the size of the bottom, target depth, and slope angle of the walls:
a – dependence of the volume of rock mass within a round-shaped pit envelope;  

b – the haulage work depending on a pit depth at the target depth of − 585 m
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The way to manage the shape of a pit walls in 
a  final pit envelope, in order to achieve significant 
slope angles is to optimize the parameters of 
transport (haulage) lines:

– use of narrow transport berms, including t 
single-lane roads with separation of the laden and 
unladen vehicle traffics; 

– use of increased road gradients;
– use of appropriate modes of transport located 

on benches without transport berms (high incline 
conveyor, skip hoist, freight suspended ropeway, 
etc.), etc.

In order to compare different schemes of open-
ing of mineral deposits in an open-pit with different 
modes of transport, certain criteria need to be de-
fined. One such a criterion can be the energy intensity 
of hauling the entire volume of rock mass from a pit.

The approach which uses energy intensity as an 
indicator or criterion for evaluating open-pit mining 
processes or mining machines is used in a number 
of studies [4–7]. This indicates both the universali-
ty of this method and the relevance of the problem 
under consideration. The topic of energy efficiency 
has been pressing for the last 20 years. For exam-
ple, the paper “Substantiating systems of open-pit 
mining equipment in the context of specific costs” 
[8] describes the energy efficiency of equipment 
in coal mines. The study "Energy consumption in 
open-pit mining operations relying on reduced  
energy consumption for haulage using in-pit crusher 
systems" [9] investigates energy efficiency in haul-
age with the use of in-pit crushing systems. “Smart 
energy management: a comparative study of energy 
consumption forecasting algorithms for an experi-
mental open-pit mine” [10] is a paper which reviews 
the problem of smart energy efficiency management. 
In the study “Structure of energy consumption and 
improving open-pit dump truck efficiency” [11], in-
creasing energy efficiency through reducing ener-
gy consumption is considered. The paper “An inte-
grated model of an open-pit coal mine: improving  
energy efficiency decisions” [12] describes an inte-
grated model of a coal mine. The paper “Bulk mate- 
rial transportation system in open pit mines with im-
proved energy efficiency” [13] describes the increase 
in energy efficiency of bulk material transportation. 
Ageneralized approach to assessing transport sys-
tems on the whole and the energy efficiency of indi-
vidual vehicles should be combined.

Research tasks and objectives
1) to structure the energy intensity of rock mass 

(RoM) haulage, applicable to compare the efficiency 
of transport modes and opening schemes, by hierar-
chical level;

2) to establish patterns of change in the relative 
energy intensity of rock mass haulage from a pit to 
the surface depending on the parameters of a pit;

3) to determine the energy intensity of rock mass 
haulage by different modes of transport when opening 
the working zone by truck transport.

Research techniques
In this study, the energy intensity of rock mass 

haulage from the working zone of a pit to the surface 
is considered in several hierarchical levels (Table 1). 

Since the study is aimed at identifying general 
patterns, for simplicity the calculation of the volume 
of rock mass within a pit envelope is performed as 
for an inverted truncated cone, the generatrix slope 
of which corresponds to the average slope angle of 
the pit walls.

To a certain extent, when searching for a rational 
scheme of opening and an appropriate mode of 
transport, an open pit that has no transport berms 
can be considered as the ultimate optimized option. 
Only bench sloping (working berms) is implemented 
on its walls, and the wall slope angles are selected to 
maintain wall stability. We will conventionally call 
such pit a “basic” option. A number of 3D models of 
pits with slope angles of 35, 45, 55 and 65°, on the 
target envelopes (walls) of which transport berms 
were positioned, were studied. The simulation was 
carried out in Mineframe software package [14] for 
a number of open pit options, in order to test the 
method of analytical calculation of a pit volume [15], 
which allowed accuracy to be achieved under a wide 
range of mining conditions.

The working berm was assumed to be 15 m wide. 
The width of transport berms was taken as different in 
accordance with the rational type of dump trucks for a 
particular size of a pit (taking into account a pit dimen-
sions in plan and depth) which determines the produc-
tion capacity. The range of variation was as follows:

– for small pits, the width of berms of 24.5 m is 
designed for 60–90 ton-payload dump trucks;

– for large pits, the width of berms of 34 m is 
designed for 130–160 ton-payload dump trucks.

Fig. 2 shows the results. They demonstrate 
that the construction of spiral ramp berms leads to 
a decrease in the wall slope angles by 2–3° for small 
basic angles and by 5–7° for large basic angles. The 
data processing enabled the dependences of the slope 
angle on the pit depth and the overall pit slope angle 
(Table 2) to be determined. They were used in further 
calculations.

In order to cover a set of pits in terms of the stability 
of walls. the following basic overall slope angles were 
taken: 35°, 45°, 55°, 65°.
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Table 1
Hierarchical levels of hauling energy intensity research

Level of energy intensity  
consideration Expression for estimation Significance

1

Energy intensity of haulage in units 
of potential energy (conservative forces 
only), taking into account the volume 
for pushback for the placement of 
haulage lines

0

p

p

E

E

∆

∆

Effect of pushback for the placement of haulage lines, 
taking into account their parameters, on the total 
energy intensity (as a rule, produces the main effect on 
the total energy intensity)

2

Energy intensity of haulage in units 
of physical work of external (in relation 
to vehicles) conservative forces and 
external dissipative forces

( 1) ( 1)

( 2) ( 2)

( 1)

( 2)

p T d T

p T d T

T

T

E

E

A A
A A

∆

∆

+
=

+

When comparing modes of transport: along with the 
effect of the haulage lines parameters, the energy 
efficiency of a drive (propelling unit) of a particular 
mode/modification of transport is taken into account

3

Energy intensity of haulage taking into 
account the energy carrier indicators

0

( )
p d

po p

E

E

A qQ
E

∆

∆

+
=

1. For a particular mode of transport: selection 
of the optimal shape of the walls of pushbacks and 
an ultimate pit, determination of rational parameters 
of openings (slope and width of transport berms, etc.)

( 1) ( 1) 1

( 2) ( 2) 2

( 1)

( 2)

( )
( )

p T d T T

p T d T T

T

T

E

E

Q A q
Q A q

∆

∆

+
=

+

2. When comparing modes of transport: the selection 
of energy-efficient mode of transport, taking into 
account the energy carrier indicators (fuel calorific 
value, coefficient of efficiency of electricity generation 
and transmission, etc.) and the coefficient of efficiency 
of the power plant of vehicles

Notes: ΔЕp, ΔЕp0 are energy intensities of rock mass lifting (difference of the mass potential energies on the surface and in situ 
in a pit) for an open pit with haulage lines (ΔЕp) and the basic pit option (ΔЕp0), respectively; Ad is work against dissipative forces 
when hauling the rock mass; T1, T2 are modes/modifications of transport 1 and 2, respectively; Q is total energy inputs for rock 
mass haulage; q is specific energy intensity of generation and transmission of a unit of energy by a power plant to a vehicle's engine 
(for example, the lower calorific value of fuel, taking into account the coefficient of efficiency of the internal combustion engine and 
the transmission).
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Fig. 2. Changing slope angle of a round-shaped pit  
when constructing transport berms for spiral ramps 

on the walls

Table 2
Dependencies of slope angle on pit depth (Нk)

Параметры
Overall pit slope angle 

35° 45° 55° 65°

Dependence of pit slope angle on pit 
depth y 0.0018Нk + 32.168 0.0035Нk + 38.325 0.0052Нk+ 46.898 0.004Нk + 54.771

Confidence R² 0.9967 0.884 0.7647 0.8848
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Fig. 3. Scheme for determining the volume of layers 
to be excavated within a pit envelope:

Sl is layer area, m²; Sd is bottom area, m²; Vl is layer volume, 
m³; hl is layer height, m; hy is bench heigh, m;  

hpi height from the top elevation of a pit (daylight surface) 
to the bottom elevation of a layer, m; Y is overall pit slope 

angle, deg; Hq is pit wall height
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Let us define the theoretical energy intensity as 
the energy spent for lifting the whole volume of a rock 
mass within a pit envelope to the surface, described by 
the change in the potential energy of each elementary 
volume between the positions “on the surface” 
and “in situ”. In this case, the calculation shall be 
performed layer-by-layer, since the material moving 
in the horizontal plane does not lead to a change in 
energy intensity taking into account the accepted 
assumptions (Fig. 3).

Correspondingly, the energy intensity of rock 
mass haulage from a pit envelope:

0

,
kH

p li pi pi l piE V h g g h S dh∆ = ρ = ρ∑ ∫
	

(1)

where Vli is volume of the i-th layer (horizon) within 
a  pit envelope, m3; hpi is height from the bottom of 
the i-th layer to the surface of the pit (height of rock 
mass lifting), m; g is free fall acceleration (9.81), m/s2;  
ρ is density of rock mass in a pillar, т/m3.

When passing to an integral, a layer height 
decreases to an infinitesimal value, so the areas of 
the bottom and the top of the truncated cone, which 
represents each layer, can be considered to be equal. 
The corresponding area, m2, is defined as follows:

2 2 2 2 2

2 2

2 ,
l d d k d pi

k k pi pi

S S s H ctg s h ctg

H ctg H h ctg h ctg

= + π γ − π γ +

+ π γ − π γ + π γ         
(2)

where Sd is the area of the bottom of a pit, m2; γ is the 
average overall pit slope angle, deg; Нk is target depth 
of a pit, m. 

Correspondingly, the formula for determining Ep 
can be expressed as:

0
2 2 2 2 2

( 2 2

2 ) .

kH

p d d k d pi

k k pi pi pi

E g S s H ctg s h ctg

H ctg H h ctg h ctg dh

∆ = ρ + π γ − π γ +

+ π γ − π γ + π γ

∫

  

(3)

After all transformations and integration, the 
formula takes the following form:

2
4 3 2 .

12 3 2
d d

p k k k

S ctg Sctg
E g H H H

 π γπ γ∆ = ρ + + 
     

(4)

Research Findings
As already mentioned above, the energy in-

tensity of rock mass haulage is determined by two 
main factors: the distribution of volumes within a pit 
envelope; and the increase in energy consumption 
for haulage with extraction deepening. Therefore, in 
order to explain the patterns of changes in the energy 
intensity when changing the parameters of open 
pits, it is important to identify their influence on the 
location of the “center of mass” of the total volume 
of rock mass within a pit envelope. It can be seen in 
Fig. 4, a that, at a bottom diameter of 100 m, with 
increasing the target depth of a pit above 500–600 m,  
the average weighted height of rock mass lifting 
stabilizes at 26–28 % of the target depth, and, at the 
depth less than 200 m, the height increases sharply, 
becoming practically equal to the full depth of a pit. 
As the pit bottom diameter increases, the lifting 
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Fig. 4. Pattern of changes in the position of the “center of mass”  

of the rock mass volume within a pit envelope depending on its parameters:
а – ratio of the average weighted (by the volume of excavated rock mass) depth of a pit to the target depth of a pit;  

b – reciprocal cumulative graph of the volume of rock mass in a pit envelope as a function of a pit depth
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height stabilization zone shifts to greater target 
depth values. Increasing the pit slope angle entails 
a  shift of the average weighted height towards 
greater depths (Fig. 4, b).

Calculations showed that the energy intensity 
of rock mass haulage, based on the difference in the 
potential energy (see Table 1, p. 1), characterizes the 
mining and geological conditions and the scheme of 
opening as a whole. Fig. 5 shows that its increase with 
the depth of a pit is generally similar to the increase 
in the volume of pit space. However,  as the analysis 
showed, this is more intense due to increasing energy 
consumption with depth. Increasing the slope angles 
naturally leads to decreasing the rock volumes and, 
consequently, the total energy costs, while increasing 
the diameter of the bottom leads to the costs increase.

A convenient way to compare alternative 
opening schemes is to calculate relative energy 
intensity, as equal to the ratio of the energy 
intensity of hauling the whole volume of the rock 
mass within a pit with the considered opening 
scheme ΔЕp to the energy intensity for a pit without 
opening berms and ramps ΔЕp0. It makes it possible 
to estimate the contribution of opening berms and 
ramps to the increase in the volumes and their 
distribution by depth. Let us consider the results of 
the calculations in more detail. 

Fig. 6 shows that the curves of the dependences 
of the relative energy intensity on the target depth of 
a pit have maximums, corresponding to the greatest 
negative impact of the placement of transport berms 

on a pit wall cutback. This pattern is “natural”, arising 
from geometry, so these groups of pits should be 
subject to mandatory optimization. The decrease 
in relative energy intensity with further increase in 
depth can be explained by a decrease in the proportion 
of wall cutback in the geometric volume of the pit 
space and a smaller decrease in the slope angles of a 
pit due to the distribution of transport berms over the 
increasing perimeter of the outline of a pit. For the 
same reasons, the specific energy intensity decreases 
as the size of a pit bottom increases.

Fig. 7 shows that with growth of the basic pit slope 
angle (without transport berms), which were taken in 
the study as the limiting stable slope angle, the relative 
energy intensity increases at all depths. However, the 
character of this growth changes (see Fig. 7, b): at low 
depths the intensity of growth decreases; at depths of 
400–500 m the graph is almost straight, and then it 
curves, approaching the parabolic form.

Pit bottom diameter has a significant impact on 
the relative energy intensity. With a large bottom 
diameter, the relative energy intensity is generally 
lower than in the case of a small diameter (Fig. 8). 
Moreover, if at small bottom sizes, the maximum 
energy intensity is observed at a depth of the pit of 
100–500 m, then at an extensive bottom the intensity 
shifts to depths of 500–900 m. Consequently, the 
greatest negative impact from the wall cutback of a pit 
for the placement of haulage lines on them is observed 
for pits with relatively small size of the bottom,  
50–100 m in diameter at a depth of 100–500 m. 
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The patterns described above refer to the 
theoretical energy intensity. In practice, it is 
markedly influenced by the mode of transport used, 
characterized by specific energy consumption. In 
order to bring different modes of transport with 
different energy carriers (diesel fuel, electricity) to 
a comparable type of energy intensity, the following 
must be used (Table 3):

– the calculated work of conservative and 
dissipative forces on a vehicle engine;

– the energy of the primary fuel by its calorific 
value, at the place of its generation (diesel engine of 
autonomous vehicles or a power plant).

With regards to the second option, the study [6] 
suggests and describes the method of reducing the 
energy intensity of a transport mode to the amount 
of consumed fuel equivalent in g of f.e./(t·m), suita-
ble for practical calculations in natural terms. Howe- 
ver, given that it is more convenient to operate with 
energy units within the framework of this study, in-
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cluding for the transition to dimensionless relative 
units, Table 3 shows the results of the calculations 
based on: traction calculation, transmission effi-
ciency calculation, averaged reference efficiency of 
engines, lower calorific value of fuel, and calculation 
of the losses in power lines. For electrified modes of 
transport (rail and conveyor), a scheme with electri- 
city generation at a gas turbine mini thermal power 
plant located in the immediate vicinity of a pit was 
adopted. 

Note that these indicators are averaged and de-
pend on specific mining conditions (weighted aver-

age slope of the route, haulage distance, configura-
tion of haulage lines, etc.).

The capabilities of the approach under 
consideration were tested by comparing the combined 
modes of transport: truck+rail and truck+conveyor. 
The slope angle of a pit with haulage lines on the 
walls was taken into account, as well as the specific 
energy intensity of hauling depending on the height 
of the rock mass lifting (the pit depth). For the sake 
of convenience, the results of the calculations are 
given in the form of the ratio of energy intensities 
(Fig. 9): the smaller this ratio, the more economical 

Table 3
Specific energy intensity of generation and transmission of a unit of energy by a power plant to a vehicle’s engine

Mode of transport

Specific energy intensity by mode of transport1

MJ / MJ (work of forces on 
the wheels of a vehicle)

MJ / MJ 
(taking into account the heat 
of combustion, the efficiency  
of PP and the transmission 

from the power line to a vehicle)

Ratio to the energy intensity indicator according to Table 1. A / ΔЕp Q / ΔЕp

Dump trucks 3.28 9.89

ЖRail / Trucks + Rail2 2.01 / 2.52–2.64 6.89 / 8.09–8.39

Conveyor / Trucks + Conveyor2 1.88 / 2.44–2.163 5.98 / 7.37–6.533

1 In the numerator, the initial consumption of the energy carrier is converted into fuel equivalent.
2 In the range of pit depths of 200-1000m, the height of the working zone of dump trucks is accepted: in case of rail transport, 

80–400 m, in case of conveyor transport, 80–150 m.
3 Taking into account coarse crushing; PP – power plant.
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In parentheses, the average pit slope angle is given
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