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Abstract

At the moment, the use of digital models in the development of oil and gas fields is an effective tool for making
informed tactical and strategic decisions to maximize the extraction of hydrocarbon reserves in a field. At the
same time, the permanent increase in the share of hard-to-recover reserves leads to an accelerated increase
in the role of simulation of reservoir hydrocarbon systems in the development of oil and gas fields. Many gas-
condensate fields in Eastern Siberia can be characterized as reservoirs with low permeability and porosity and
difficult thermobaric conditions, and, as a result, the issue of improving the efficiency of the development of
such reservoirs to increase the cumulative production of gas and condensate is relevant. If the initial reservoir
pressure of a gas-condensate field corresponds to the dewpoint pressure, dropout of a significant amount
of retrograde condensate is observed when the pressure in the reservoir decreases. Condensate dropout in
the pore space of a reservoir leads to a decrease in both the condensate recovery factor (CRF) and the gas
recovery factor (GRF). The predictive calculations of the development of a gas-condensate reservoir by vertical
and horizontal wells were carried out with the use of the hydrodynamic simulator T-Navigator of a domestic
manufacturer Rock Flow Dynamics. The calculations were performed under various process conditions on
the example of a gas-condensate field, which is characterized by complicated thermobaric conditions (the
initial reservoir pressure corresponds to the dewpoint pressure), while the target process parameter was
the amount of condensate dropout in the reservoir. Based on the results of the study, the main conclusion
can be drawn. The development of the reservoir by horizontal wells can significantly reduce the reservoir
drawdown pressure compared to vertical wells, while the condensate dropout in the reservoir occurs in
a larger volume; the condensate becomes immobile and prevents further gas production, reducing the total
production of condensate. An increase in reservoir condensate recovery in the course of the development of
a gas-condensate reservoir by vertical wells compared to horizontal wells is observed under certain reservoir
conditions corresponding to the simulation performed in this study, namely, at low reservoir permeability and
porosity and the presence of a saturated gas-condensate system.
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TOCTOSTHHOE yBeJIMueHMe 0 TPYOHOM3BIeKaeMbIX 3al1acoB MPUBOAUT K YCKOPEHHOMY HapacTaHMUIO PO
MOJEeJIMPOBAHMSI TUIACTOBBIX YIJIEBOJOPOAHBIX CUCTEM IPU Pa3paboTKe HeDTSHBIX U ra30BbIX MECTOPOXKIe-
Huit. MHOTMe ra3oKOHAeHCAaTHbIe MeCTOPOXKAeHMs BocTtounoit Cubupyu MOXKHO OXapaKTepu3oBaTh Kak 3ajie-
KU C HU3KUMU (QUIBTPAIVIOHHO-eMKOCTHBIMM CBOVICTBAMM U CJIOKHBIMU TEPMOOAPUUYECKUMMU YCIOBUSIMMA,
U, KaK CJIeACTBYME, aKTyaIbHbIM SIBJISIETCSI BOIIPOC ITOBBINIEHMS 3G (PEKTUBHOCTY pa3paboTKM ITOJOOHBIX 3a1e-
SKelt 11 yBeJIMueHus] HaKOTUIEHHO MoObIYM ra3a M KOHJEeHcaTa. B ciydae eciy Havya/ibHOE TJIACTOBOE JIaB-
JIeHVe Ta30KOH/IEHCATHOTO MeCTOPOKAEHUs COOTBETCTBYET AABIEHMIO HAavua/la KOHAEeH A, HaGIoaeTcst
BBIMa/IeHMe 3HAUMTETBbHOTO KOJIMUEeCTBA PEeTPOrpagHOro KOHIeHcaTa Py MTOHMKEHUY TaBJIeHMs B IIacTe.
BhInazieHre KOHJ€HCATa B TOPOBOM MPOCTPAHCTBE TUIACTA TPUBOIUT K MOHMKEHUIO Kak Ko3dduimenta us-
Bieuennst kouaeHcara (KUK), tak n koabduinenrta nssnedenus raza (KUT). C moMoIibio rugpoguHaMmde-
ckoro cumysnsitopa T-HaBurarop oreuectBeHHOTO mpou3BoauTeiis Rock Flow Dynamics 6butM Mpou3BeeHbl
TIPOTHO3HbBIE PAacyeThl Pa3pabOTKM ra30KOHIEHCATHON 3a/IeKy BePTUKAIbHBIMY Y TOPU30HTAIbHBIMM CKBa-
skuHaMu. PacueTsl MpOM3BOAMINCH ITPY PA3INMUHBIX TEXHOIOTMYECKMX peXXUMax Ha IIpMMepe ra30KOHAeHCaT-
HOTO MeCTOPOXKIIEHMSI, KOTOPBI XapaKTepPU3yeTcsl CJIOKHBIMU TepMOOapUUYeCKMMM YCJIOBUSIMU (HayaabHOe
7IaCTOBOE JIaBJIeHVe COOTBETCTBYET JaB/IeHUIO Havasia KOHAeHCal[MK), IPY 3TOM LieJIeBbIM TeXHOIOTMYECKUM
IapaMeTpOM SIBJISVIOCh KOIMUECTBO BhIMaBIlIero KOHAeHcaTa B riacte. [1o pesyiabTaTam UCC/IeS0BaHUS MOXKHO
crenaTh OCHOBHOJ BBIBOI, — pPa3paboTKa 3a/I€XM TOPU3OHTATbHBIMU CKBRKMHAMMY MO3BOJISIET 3HAUUTEIHHO
CHM3KATD JIelIPeccuIo Ha IIacT M0 CPaBHEHMIO C BepTUKAIbHBIMU, ITPU 3TOM KOHJIeHCAT B IJIaCTe BbIMagaeT 1o
60biIeMy 00bEMY, CTAHOBUTCSI HETIOABVKHBIM U TIPEISITCTBYeT JaabHellel fo0biue rasa, CHUKas 00IIyo
I06bIUy KOHIEHcaTa. YBeJMueHue KOHIEHCaTOOTHauy IUlacTa Mpyu pa3paboTKe ra30KOHIEHCATHON 3ajIesku
BEPTUKAIbHBIMY CKBAaXMHAMM 10 CPAaBHEHUIO C TOPU3OHTAIBHBIMU CKBAXMHAMM HAOIIONAETCS TIPU OTpe-
JEJIEHHBIX TUIACTOBBIX YCJIOBUSIX, COOTBETCTBYIOIIMX ITPOIETaHHOMY B HAcCTOSIIEl paboTe MOAEIMPOBAHMIO,
a MMEHHO TTPU HU3KUX QUIbTPALIOHHO-eMKOCTHBIX CBOMCTBAX IUIACTa M HAJMYMU HACHIIIEHHOM ra30KOH-
IEeHCaTHOM CUCTEMBI.

KnioueBble cnoea

KO3(bGUIMEHT U3BIEUEHNS] KOHIEHCATa, KOMITO3UIIMOHHAS MOJe/b, Fa30KOHJEHCATHOE MECTOPOXKIEHUE,
MHOTOKOMIIOHEHTHAsI MOJeJb, PETPOrPagHbIii KOHIEHCAT, MaTeMaTUYecKast MOZesb, KOHIEeHCATOOTAaya, KO-
3 duimeHT n3BIeUEHMS ra3a
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Introduction

At present, the use of geological and hydrody-
namic simulation in the development of oil and gas
fields is an effective way to make informed tactical
and strategic decisions for the effective extraction of
hydrocarbon reserves in a field. At the same time, the
permanent increase in the share of hard-to-recover
reserves leads to an accelerated increase in the role
of simulation of reservoir hydrocarbon systems in the
development of oil and gas fields [1-3].

The most common model in the development of
oil and gas fields is a non-volatile oil model, in which
an oil and gas system is simulated using two compo-
nents: oil and gas, which, in turn, can be dissolved in
oil [4-6].

The simulation of a gas-condensate reservoir
requires a complex compositional model of three-
phase filtration, due to the fact that, when develo-
ping a gas-condensate reservoir, it is necessary to
take into account the actual composition of the re-
servoir fluid [7-9].

When the pressure isothermal drops below a cri-
tical point (dewpoint) during development, the phe-
nomenon of retrograde condensation occurs in the

pore space of the reservoir. Fields with such charac-
teristics are called gas-condensate fields [10-12].

The intensity of gas-condensate dropout, in ad-
dition to pressure, also depends on the component
composition and physical and chemical properties of
the phases. Changes in fluid composition occur under
the influence of depth, surface tension, and viscosity.
At the same time, a decrease in the cross-section of
filtration channels leads to a decrease in permeabi-
lity and, correspondingly, to a decrease in producti-
vity [13-15].

The use of horizontal wells in comparison with
vertical wells leads to a decrease in the reservoir
drawdown pressure, which leads to less condensate
dropout in the pore space and, correspondingly, to
an increase in the final condensate recovery in the
field. At the same time, it should be noted that there
are few comparative studies of the use of horizontal
and vertical wells in conditions of low reservoir per-
meability in order to increase the final condensate
recovery [16-18].

The purpose of this work is to select the opti-
mal option of a field development using hydrody-
namic simulation to increase condensate recovery of
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a gas-condensate field characterized by low permea-
bility and porosity and initial reservoir pressure equal
to the dewpoint pressure.

In order to achieve the goal, the following tasks
were solved in the study:

- construction of two options for the develop-
ment of a gas-condensate reservoir based on a hydro-
dynamic composite model: development by vertical
wells (option 1) and horizontal wells (option 2);

- comparative analysis of the proposed options
for the development of a gas-condensate reservoir
characterized by low permeability and porosity.

Description of the composite model: the hy-
drodynamic model (Fig. 1) is represented by a selected
fragment of the field.

Parameters adopted for simulation:

Height along Z (average) — 35.7 m;

Initial reservoir pressure — 29.1 MPa;

Reference depth — 2860 m;

Initial reservoir temperature — 80°C;

Porosity — 0.09 — 0.169, decimal quantities;

Horizontal permeability - 0.0001556 -
0.0271019 pm?;

Net/gross ratio (NTG) (average) — 0.6572, decimal
quantities.

Reservoir gas component composition:

CO, - 0.273; N, — 1.045; CH, - 80.842; C,H, -
6.044; C;H, - 3.761; iC,H,, — 0.790;

nC,H,, — 0.921; C.H,, and higher — 6.324 % mole.

Properties of the gas-condensate fluid:

Reservoir pressure — 29.10 MPa; Temperature —
80°C; potential condensate content — 290 g/m?; mole
fraction of dry gas — 0.937 decimal quantities; super-
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compressibility coefficient under initial conditions —
0.902; fluid dewpoint pressure — 29.10 MPa [19].
Fluid properties were simulated based on the
data from gas-condensate studies. Based on the data
on the composition and properties of the reservoir
fluid obtained in the process of laboratory experi-
ments, a composite model of the fluid was created.

Research Methodology

One of the ways to rationally increase the pro-
fitability of the development of gas and gas-conden-
sate fields with productive formations with low res-
ervoir permeability and occurring at great depths is
the shift to a development system using horizontal
wells. The main advantages of horizontal wells are
an increase in the area of reservoir fluid filtration
through the well walls and a decrease in a produc-
tive reservoir drawdown, which makes it possible
to ensure sufficiently high gas and gas- condensate
flow rates in low-permeability and low-capacity re-
servoirs, as well as to reduce the number of required
production wells in a field.

Two options for reservoir development were con-
sidered in the work: three vertical wells — option 1;
one horizontal well with a horizontal section length
of 1,400 m - option 2 [19-21].

The selection of three vertical wells versus one
horizontal well, as well as the length of the horizontal
wellbore, was justified by the economic costs of well
construction. Well positioning was based on the map
of initial gas reserves and permeability, as well as on
maps of the initial net gas thickness of the reservoir
(Fig. 2, 3). In other words, the two options considered

—
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Fig. 1. Reservoir model used in calculations
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are comparable in terms of well construction costs. In
case of a change in the number of wells, namely addi-
tional drilling of a horizontal well or consideration of
only two vertical wells as the first option — the con-
ditions for the comparability of initial construction
costs change.

Drawdown and gas withdrawal were taken as varia-
ble parameters for well operation. According to the ac-
cepted minimum possible bottomhole pressure in the
field conditions, it was decided to switch to a bottom-
hole pressure of 3.5 MPa in case of failure to achieve
the target indicators for flow rate and drawdown.

Further, the main indicators of the development of
the reservoir fragment were calculated and compared
with each other to find the most profitable option in
terms of gas and gas-condensate production both in
terms of well design (three vertical or one horizontal)
and in terms of process conditions of operation.

The parameters of the process conditions of well
operation adopted in the simulation for the options:
gas flow rate of 600, 900, 1,500, and 2,100 thou-
sand m>/day for one horizontal well; gas flow rate of
200, 300, 500, and 700 thousand m3/day for one verti-
cal well; drawdown of 2, 3, 4, 5, and 6 MPa for each of
the three vertical wells.
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These parameters of the process conditions lie
within the range of the changes in the actual parame-
ters of the operation of vertical wells in the field.

Discussion

When developing a model of a gas-condensate
reservoir with vertical wells, it is necessary to main-
tain significantly higher drawdowns compared to
horizontal wells in order to achieve comparable flow
rates. In this regard, in the case of vertical wells, there
is a sharper drawdown in the bottomhole zone of
a well, which causes more condensate dropout near
the well, which ultimately leads to a decrease in the
gas permeability of the bottomhole zone of a well. At
the same time, at a certain distance from a well, small-
er drawdowns are observed compared to the near-well
zone, which ultimately leads to a greater amount of
condensate dropout in the bottomhole zone com-
pared to the rest of the reservoir. It is known that in
the process of dropout, condensate forms three differ-
ent areas of mobility near a vertical wellbore. In two of
these zones, gas-condensate is present in mobile and
immobile forms (Fig. 4) [9]. Correspondingly, most of
the condensate in the bottomhole zone of a vertical
well will occur in a mobile form.

X Cke.|gepr. 2

lop. cks 1

Fig. 3. Option 2 on the initial reserve map (a) and permeability map (b)
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However, at the moment, there are very few stu-
dies regarding condensate dropout when using hori-
zontal wells. In the case of developing a model of
a gas-condensate reservoir with horizontal wells, we
observe significantly lower drawdowns and high co-
verage of the reservoir by a horizontal wellbore, which,
in turn, leads to condensate dropout at significant
distances from the well, but in a smaller amount than
in the bottomhole zone in the case of vertical wells.
At the same time, the condensate formed (dropout)
at considerable distances from a horizontal well will
exist in an immobile form. As a result, this leads to an
overall loss of cumulative condensate production.
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Fig. 5 shows the change in condensate recovery
(oil flow rate in the designation of the vertical axis)
for a forecast period of 40 years with different flow
rates of vertical wells. The figure shows that with high
gas withdrawals (black line — 900 thousand m3), at
first, more condensate is produced, but then there is
an intensive decrease in its production due to a large
pressure gradient, leading to more condensate drop-
out in the reservoir. It can also be seen that with
gas withdrawals of 200 thousand m3/day (lilac line)
the condensate flow rate is more uniform, and after
40 years of operation in this case, the maximum value
of condensate recovery is observed, but the optimal
amount of extraction should be selected based on the
economic feasibility of developing the reservoir.

For optimal development mode and maximum
condensate recovery over a given period of time, the
flow rate level is selected that would justify from an
economic point of view the extraction of gas reserves
with a sufficient amount of condensate produced.
Fig. 6 shows that the maximum condensate recovery
(2,100 m®) is achieved at a gas flow rate of 300 thou-
sand m?®/day (blue line) for the period of well opera-
tion of 40 years.

Fig. 7 shows the condensate recovery time de-
pendence at different flow rates of a horizontal well.
Value of condensate recovery of a horizontal well at
a flow rate of 2,700 thousand m3/day corresponds to
620 m3/day, while in the case of a vertical well with
a flow rate of 900 thousand m3/day (while the total
flow rate of three vertical wells will also correspond
to 2,700 thousand m?3/day), the condensate recovery
corresponds to 760 m3/day (see Fig. 5). Besides, on
the graphs, we can observe certain “jumps”, which
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Fig. 5. Condensate recovery time dependence at different gas flow rates in the case of vertical wells (option 1)
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is most likely due to the formation of a “condensate
accumulation” in the pore space with the subsequent
achievement of critical mobility of the formed con-
densate. Lower condensate recovery values of a hori-
zontal well can be explained by lower values of draw-
down in a horizontal wellbore, which leads to more
uniform condensate formation (dropout) at a greater
distance from the well and to more significant con-
densate losses in the reservoir under conditions of
low permeability and porosity, since condensate un-
der these conditions will exist in an immobile form.
Fig. 8 shows time dependencies of cumulative
condensate production in the case of a horizontal
well. The maximum cumulative condensate produc-
tion is observed, same to the case of vertical wells, at
a horizontal wellbore flow rate of 900 thousand m3/day
(corresponds to the case of a vertical well flow rate of
300 thousand m3/day). However, the cumulative con-
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densate production for a horizontal well over a 40-year
operation period reaches 1,850 m?/day, while in the
case of vertical wells it is 2,100 m3/day.

Fig. 9 presented gas flow rate graph for three ver-
tical wells at different drawdowns corresponding to 2,
3,4, 5, and 6 MPa (with a target flow rate of 700 thou-
sand m3/day) with the subsequent change to the bot-
tomhole pressure control mode of 3.5 MPa if it is im-
possible to maintain the preset values of drawdowns.
Analysis of the graphs shows that the lower the draw-
down, the more steadily the required flow rates can be
maintained during the life of a well.

Fig. 10 shows time dependencies of cumulative
condensate production at different drawdowns of ver-
tical wells corresponding to 2, 3,4, 5, and 6 MPa (with
a target flow rate of 700 thousand m?/day). Analysis of
the graphs shows that the optimal drawdown in the
case of a prognosis for 40 years is 3 MPa.
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Fig. 6. Cumulative condensate production at different flow rates for vertical wells (Option 1)
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Fig. 7. Condensate recovery time dependence at different gas flow rates in the case of a horizontal well (Option 2)
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Fig. 9. Graph of changes in gas flow rates for three vertical wells at different drawdowns of 2, 3,4, 5, and 6 MPa (Option 1)
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Fig. 11. Comparison of condensate recovery of vertical and horizontal wells at different flow rates
(Options 1 and 2)

Fig. 11 shows comparative condensate recovery
graphs in the cases of gas-condensate reservoir de-
velopment by vertical and horizontal wells. The ana-
lysis shows that the condensate recovery of horizontal
wells in all cases will be less than that of vertical wells.
In the case of high initial flow rates, a comparability
of the condensate recovery of the two options after
20 years of operation is observed, while in the case of
low initial flow rates (200 thousand m3/day for vertical
wells and 600 thousand m3/day for a horizontal well),
the excess of condensate recovery of vertical wells
compared to horizontal wells is observed during the
entire development period.

Conclusions

1. Using hydrodynamic simulation based on
a multicomponent (compositional) model, a com-
parative analysis of the development of a gas-con-
densate reservoir by vertical and horizontal wells
was carried out, the results of which revealed the
advantage of reservoir development by vertical wells
compared to horizontal wells in terms of maximum
condensate recovery. Field development by horizon-
tal wells can significantly reduce reservoir drawdown

compared to vertical wells, with condensate dropout
in the reservoir in large volume, becoming immobile
and preventing further gas production, while redu-
cing overall condensate production. An increase in
reservoir condensate recovery in the course of the
development of a gas-condensate reservoir by ver-
tical wells compared to horizontal wells is observed
under certain reservoir conditions corresponding
to the simulation performed in this study, namely,
at low reservoir permeability and porosity and the
presence of a saturated gas-condensate system (the
dewpoint pressure corresponds to the initial reser-
voir pressure).

2. A further more in-depth analysis of the de-
velopment of a gas-condensate reservoir characte-
rized by low permeability and porosity by horizon-
tal wells is required from the point of view of oth-
er options for the optimal location of a horizontal
wellbore in the reservoir in comparison with other
options for the location of vertical wells in order to
determine the area of occurring immobile conden-
sate during the development, which ultimately has
a significant impact on the cumulative condensate
production.
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