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Abstract
Studying mineralogical composition of ores is a fundamental step in the exploration of new deposits, as it 
allows determining the forms in which useful components are found, the processes of ore formation, and the 
potential recoverability of valuable elements. The mineral associations, textures, and structures of ores not 
only provide key information about the geology of a deposit, but also determine the choice of beneficiation 
methods. Despite the development of modern analytical tools and existing solutions for automatic mineral 
diagnosis, such as those based on the SEM-EDS method, optical microscopy remains the most accessible 
means of quantitative mineralogical analysis. However, it remains labor-intensive and requires highly skilled 
specialists. In addition, its visual nature limits the accuracy and reproducibility of results, creating a need for 
more effective approaches. One promising area is the automation of ore mineral identification based on images 
of polished sections. The aim of the work was to develop and validate a universal segmentation model based 
on deep learning. In the course of the research, related problems were also solved, including the creation of an 
open LumenStone dataset, the development of color adaptation methods, joint analysis of PPL and XPL images, 
panorama construction, and the development of a fast annotation method. The work applied convolutional 
neural network architectures, color correction and joint image processing algorithms, as well as an original 
sampling method that compensates class imbalance. The proposed segmentation model demonstrated high 
accuracy (IoU up to 0.88, PA up to 0.96) for nine minerals. The obtained results confirmed the effectiveness of 
integrating deep learning and modern image processing algorithms in mineralogical analysis systems and laid 
the foundation for further development of digital methods in automated petrography.
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Аннотация
Изучение минерального состава руд является основополагающим этапом при разведке новых место-
рождений, поскольку именно оно позволяет определить формы нахождения полезных компонентов, 
процессы рудообразования и потенциальную извлекаемость ценных элементов. Минеральная ассо-
циация, текстуры и структуры руд не только дают ключевые сведения о геологии месторождения, но 

https://mst.misis.ru/
https://doi.org//10.17073/2500-0632-2025-05-416
https://orcid.org/0000-0002-8500-7193
https://orcid.org/0000-0002-4217-7141
https://www.scopus.com/authid/detail.uri?authorId=57188856261
https://orcid.org/0009-0003-0814-3997
https://orcid.org/0000-0003-3299-2545
https://orcid.org/0009-0007-0936-4088
https://orcid.org/0000-0003-0133-7185
https://orcid.org/0000-0001-9910-4501
https://www.scopus.com/authid/detail.uri?authorId=7202280261
https://doi.org//10.17073/2500-0632-2025-05-416
https://orcid.org/0000-0002-8500-7193
https://orcid.org/0000-0002-4217-7141
https://www.scopus.com/authid/detail.uri?authorId=57188856261
https://orcid.org/0009-0003-0814-3997
https://orcid.org/0000-0003-3299-2545
https://orcid.org/0009-0007-0936-4088
https://orcid.org/0000-0003-0133-7185
https://orcid.org/0000-0001-9910-4501
https://www.scopus.com/authid/detail.uri?authorId=7202280261


233

ГОРНЫЕ НАУКИ И ТЕХНОЛОГИИ
MINING SCIENCE AND TECHNOLOGY (RUSSIA)

Korshunov D. M. et al. From visual diagnostics to deep learning...2025;10(3):232–244

https://mst.misis.ru/

eISSN 2500-0632

и  определяют выбор методов обогащения. Несмотря на развитие современной аналитической базы 
и существующие решения автоматической диагностики минералов, например, на основе СЭМ-EDS ме-
тода, оптическая микроскопия является самым доступным средством количественного минералоги-
ческого анализа. Однако она остаётся трудоемкой и требует высокой квалификации специалиста. А её 
визуальный характер ограничивает точность и воспроизводимость результатов, что создает необхо-
димость в разработке более эффективных подходов. Одним из перспективных направлений является 
автоматизация идентификации рудных минералов по фотоизображениям аншлифов. Целью работы 
являлась разработка и валидация универсальной сегментационной модели на основе глубокого обу-
чения. В процессе исследования также были решены сопутствующие задачи, включая формирование 
открытого набора данных LumenStone, разработку методов цветовой адаптации, совместного анализа 
PPL- и XPL-изображений, построения панорам и разработки метода быстрой разметки. В работе были 
применены свёрточные нейросетевые архитектуры, алгоритмы коррекции цвета и совместной обра-
ботки изображений, а также оригинальный метод семплирования, компенсирующий дисбаланс классов. 
Предложенная модель сегментации продемонстрировала высокую точность (IoU до 0,88, PA до 0,96) по 
девяти минералам. Полученные результаты подтвердили эффективность интеграции глубокого обуче-
ния и современных алгоритмов обработки изображений для задач минералогического анализа и зало-
жили основу для дальнейшего развития цифровых методов в автоматизированной петрографии.

Ключевые слова
минералогия, минераграфия, цифровая петрография, автоматические методы анализа изображений, 
сегментация, глубокое обучение, цветовая адаптация, панорамные изображения
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Introduction
Studying mineralogical composition of ores is 

a fundamental step in the exploration of new depo- 
sits, as it allows determining the forms in which use-
ful components are found, the processes of ore for-
mation, and the potential recoverability of valuable 
elements. The mineral associations, textures, and 
structures of ores not only provide key information 
about the geology of a deposit, but also determine 
the choice of beneficiation methods.

Despite the development of modern analytical 
tools and existing solutions for automatic mine- 
ral diagnosis, such as those based on the SEM-EDS 
method [1, 2], optical microscopy remains the most 
accessible means of quantitative mineralogical 
analysis. However, it remains labor-intensive and 
requires highly skilled specialists. In addition, its 
visual nature limits the accuracy and reproducibi- 
lity of results, creating a need for more effective ap-
proaches. 

A promising area is the automation of ore mi- 
neral identification based on photographs of polished 
sections. This approach not only reduces span time, 
but also minimizes subjective errors associated with 
visual diagnostics and enables the implementation 
of accurate statistical analysis methods. The aim of 
this work is to describe our experience in develop-
ing a  segmentation model for automatic detection 
of minerals in photographs of polished sections and 

solving a number of related problems that arose du- 
ring the research. The paper systematically outlines 
the main problems encountered by the authors and 
the solutions they propose.

Current state of the problem
The first attempts to create tools for the auto-

matic diagnostics of ore minerals under a micro-
scope were made in the second half of the 20th cen-
tury [3, 4]. At that time, spectrophotometers were 
used to measure the color of minerals, in particular, 
a mineral type was interpreted based on the absorp-
tion spectra of light in the visible range. Due to its 
low accuracy, this method was not widely used. More 
advanced methods of automatic mineral identifica-
tion were developed in the second half of the 1990s 
and were based on the analysis of photographs of 
polished sections under a microscope [5, 6]. 

Attempts were made to automatically analyze 
mineral associations using cluster analysis in order 
to find patterns between different objects in photo-
graphs [7]. Special mention should be made of the 
attempt by the authors [8] to compile a digital atlas 
of all minerals and to identify the minerals them-
selves using a dendrogram based on a digital ques-
tionnaire.

To date, existing classical solutions (without the 
use of deep learning) for automatic mineral identifi-
cation can be divided into two main groups:

https://mst.misis.ru/
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1. Based on reflected light intensity in conjunc-
tion with color characteristics expressed in the RGB or 
LAB color space [9];

2. Based on statistical principles of color palette 
separation to identify minerals in a specific sample 
[10–12].

Both approaches have significant limitations. 
Methods that use color and reflectivity are unable to 
distinguish between minerals with similar optical 
properties. Statistical methods, in turn, require recali-
bration for each new geological object, making their 
application "situational" and limited. This is well illus-
trated in [12], which shows the features of applying this 
principle to separate copper ore into three minerals 
and three lithological types at a specific deposit.

It is worth noting that there are also highly spe-
cialized solutions available in the form of extensions 
for popular image analysis software packages such as 
Fiji/ImageJ. For example, [13] describes a method for 
automatic determining  hematite grade, size, and in-
tergrowth types in ore using this software. The prob-
lem with such solutions is that they solve a narrow, 
specific problem and lack the necessary level of ver-
satility. 

The most effective way to overcome the short-
comings of the classical methods and achieve fun-
damentally better results in the automatic analysis 
of such images is to use trainable deep models (e.g., 
convolutional neural networks) that are capable of 
extracting complex hierarchical features from im-
ages, taking into account not only local textures 
and shapes, but also global relationships between 
image fragments. Instead of manually selecting 
color and statistical characteristics, such models – 
whether traditional convolutional neural networks 
(CNN) [13–15], modern transformers with a self-at-
tention mechanism [16], or hybrid architectures 
(e.g., Mamba [17]) — learn to identify the distinctive 
morphological and structural-textural features of 
each mineral.

For instance, convolutional neural networks 
were used to detect surface defects and examine poli- 
shing quality of metal products [18, 19] and to ana-
lyze carbon distribution in cast iron based on micro-
photographs of rough workpiece surfaces [20]. In [21], 
a method is presented for separating hematite and 
quartz in iron ore polished sections, with the de-
termining their size classes to optimize the feed for 
a processing plant. It is also worth noting a number 
of works devoted to the assessment and classification 
of the dimensionality of individual mineral indivi- 
duals [22, 23], as well as the analysis and typification 
of the morphology of intergrowths in a system with 
known mineral associations [24, 25]. The segmen-

tation model proposed in these works achieved 98% 
accuracy in predicting iron ore quality and hematite 
recoverability, highlighting the potential of deep 
models in solving industrial problems.

In [14], the effectiveness of deep convolutional 
networks for three-dimensional mineral identifica-
tion and free grain analysis was demonstrated, and 
in [26], the authors showed that combined analysis of 
optical micrographs using CNN improves the accuracy 
of mineral content estimation in charge. In [15], the 
authors improved the methods of feature downsam-
pling, classifying rocks more accurately based on po- 
lished section images. 

It is worth noting that applying modern deep 
learning approaches facilitates transition from image 
fragment classification [27] to full semantic segmen-
tation, which allows for accurate pixel-level segmen-
tation of images by mineral, see [17, 26] and [14, 28]. 
At the same time, works [14, 29] demonstrated the fun-
damental feasibility of creating high-quality ore min-
eral segmentation models with high identification ac-
curacy (> 0.8 by to the IoU metric). 

The main advantage of using deep trainable neu-
ral networks when working with images of ore sam-
ples is their ability to take into account the context 
of an image and adapt to the variability of mineral 
associations. Most importantly, it allows reliable dif-
ferentiation even between minerals with very similar 
characteristics (pyrite–marcasite, covellite–chalco- 
cite, etc.) without the need for permanent recalibra-
tion of the algorithm for new samples, unlike other 
computer vision methods. However, there are still 
relatively few studies devoted directly to the diag-
nostics of mineral species using such approaches. 
Deep learning models can also be used in conjunc-
tion with domain adaptation methods, which allow 
the segmentation model to be retrained on “new” 
images  – taken with different equipment or under 
different lighting conditions, and thus maintain 
high performance even with significant variations 
in input data. Extensive reviews on domain adapta-
tion [14] and examples of successful application in 
semantic segmentation of geological and satellite 
images [30, 31] confirm that this approach provides 
versatility and stability in a wide variety of condi-
tions. The fundamental feature of most deep lear- 
ning methods is the need for complete image annota-
tion for training. This is often a very labor-intensive 
process, but the use of specialized weak supervision 
methods, which appear to the user as annotation the 
image with rough strokes (ScribbleSup [32], Scribble-
Seg [33]) or clicks [34], allows in many cases to sig-
nificantly speed up the collection and preparation of 
training data.

https://mst.misis.ru/
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To build a reliable system based on deep learning, 
the following fundamental problems must be solved, 
which are discussed in detail in this paper:

1. Development of neural network methods for 
mineral segmentation.

2. Development of adaptive methods for image 
calibration and preprocessing.

3. Development of methods for joint processing of 
heterogeneous images.

4. Development of a method for creating pano-
ramic images.

5. Development of auxiliary methods for proces- 
sing and analyzing images of polished sections.

Research Materials and Techniques
This study used a collection of polished sections 

provided by the Department of Geology, Geochemis-
try, and Mineral Resources of the Faculty of Geology 
at Lomonosov Moscow State University. A Carl Zeiss 
AxioScope 40 polarizing microscope with a Can-
on PowerShot G10 camera was used to obtain ima- 
ges of the polished sections. All photos were taken 
with a magnification of ×50 and have a resolution 
of 3396×2547 pixels.

The main drawback of existing solutions that use 
deep neural network models in the considered prob-
lems of analyzing photos of polished sections [23, 35], 
according to the authors, are the proprietary image 
sets used and the proprietary code base, which makes 
it impossible to compare the methods being devel-
oped.  Therefore, all annotated (indexed) image sets 
created as part of the work are presented as a single 
open dataset LumenStone1, and the software imple-
mentation of all developed methods is published as a 
petroscope2 library with open source code for the Py-
thon 3 programming language.

The LumenStone image dataset contains sever-
al subsets focused on solving various image analysis 
problems for polished sections. The main subsets are 
S1, S2, and S3, which are aimed at the problem of min-
eral segmentation (automatic identification) and are 
formed taking into account mineral associations and 
mineral properties:

– LumenStone S1 (84 images): complex ores (ga-
lena, sphalerite, chalcopyrite, bornite, fahlore);

– LumenStone S2 (39 images): sulfide cop-
per-nickel ores (pyrrhotite, pentlandite, chalcopyrite);

– LumenStone S3 (35 images): minerals with 
strong anisotropic properties (arsenopyrite, covellite).

Pixel masks of the corresponding minerals were 
created for all images of the datasets using Super-

1  LumenStone Dataset. URL: https://imaging.cs.msu.ru/
en/research/geology/lumenstone

2  GitHub. URL: https://github.com/xubiker/petroscope

visely and Adobe Photoshop software. The masks 
are necessary for training and testing deep learning 
models. 

It should be noted that due to natural reasons 
(frequency of occurrence in nature), the collected set 
of images has a significant minerals imbalance (the 
percentage ratio is given in Table 1). This fact is an 
additional complication for the development of me- 
thods for automatic mineral segmentation and must 
be taken into account.

The authors also collected additional subsets of 
images necessary for solving related problems:

1. LumenStone V1: a special dataset of images 
of the same 10 specimens (sections) with different 
shooting conditions, designed for developing and 
testing color adaptation methods. The images were 
obtained using the same equipment with blue and 
yellow light filters, as well as using a LOMO Microsys-
tems PLM-215 microscope with a Canon EOS  40D 
camera.

2. LumenStone P1: 875 images obtained for 
35  polished sections. For each polished section, 
25 photographs were taken with 20–30% overlap, in-
tended for creating panoramic microscopic images.

To solve the problem of simultaneous analysis of 
anisotropic mineral photographs in PPL and XPL, “ro-
tated” photographs of a single field of view were taken 
with the microscope stage rotation increment of 5 and 
15° and additionally included in LumenStone S3.

Problems and their solutions 
(discussion)

The descriptions of the problems in the field of 
image processing and analysis that are to be consi- 
dered the complex problem of automatic mineral 
identification in microscopic images of polished sec-
tions and the approaches proposed by the authors to 
solve these problems are given below.

1. Neural network methods for mineral seg-
mentation. In this work, we consider convolutio- 
nal neural networks to solve segmentation problems. 
Transformer-based alternatives, although promising, 
remain excessively resource-intensive for standard 
laboratory conditions [36]. Despite the good genera- 
lization ability of convolutional neural networks, 
they are quite sensitive to class imbalance in training 
dataset [37, 38], which is characteristic of the collect-
ed data (Table 1). Furthermore, neural network meth-
ods cannot be directly applied to high-resolution im-
ages due to hardware limitations. To mitigate these 
shortcomings, we proposed a specialized method for 
sampling the training dataset during the training 
process, which extracts small fragments from images 
(patches) and acts as a data balancer.

https://mst.misis.ru/
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into account local and global context that significant-
ly improves the quality of segmentation based on the 
available data.

To evaluate the quality of segmentation in this 
work, IoU (Intersection over Union) metric was 
used  [43]. This is one of the simplest and most com-
mon methods of geometric evaluation of segmentation 
when reference labeling is available. The metric takes 
values from the range [0,  1], where 1 corresponds to 
a complete match between the predicted and reference 
labelings (ideal case), and 0 corresponds to no intersec-
tions between the predicted and reference segmenta-
tion annotation. An IoU value greater than 0.7 is usu-
ally considered satisfactory, although this depends, of 
course, on the subject area.

In our case, training the PSPNet neural network 
with the ResNet18 encoder on the LumenStone S1 
and S2 datasets, together with the class-balanced 
sampling method described above, allowed segmen- 
ting nine minerals and a generalized class of non-
metallic minerals with very high quality (the aver-
age IoU value on the test set was 0.88). The training 
uses a cross-entropy loss function, random augmen-
tations (rotation, slight changes in scale, bright-
ness, and color), an Adam optimizer with an initial 
learning rate of 0.001 and a decrease upon reaching 
a plateau. The training took approximately 3 hours 
using a Nvidia A6000 GPU. An example of applying 
the trained mineral segmentation model to an image 
from a test set is shown in Fig. 1.

The objective of the developed sampling method 
is to equalize the distribution of mineral classes fed 
into a neural network during training. For each pair 
“training image – mineral type”, a matrix containing 
the extracted area of a selected mineral at each point 
in the case of selecting a patch centered at that point 
is calculated. The resulting set of matrices is used as 
probability maps when selecting patches for train-
ing. For instance, at each sampling iteration, for the 
mineral that is currently the least represented, 1) an 
image from the training sample collection is selected 
(proportional to the content of this mineral), 2) the 
center of the patch is selected in accordance with the 
previously calculated probability maps, 3) the patch 
is extracted, and 4) the information about the rep-
resentation of minerals in the used data is updated. 
With moderate patch sizes (256–384 px), this meth-
od allows for a significant equalization of the distri-
bution of minerals in the LumenStone S1, S2, and S3 
sets that has a positive effect on the training speed of 
segmentation models and on the final segmentation 
quality metrics.

When developing neural network models for 
mineral segmentation, we reviewed and investigated 
a number of convolutional architectures, ranging from 
the traditional UNet [40] and its modification ResUNet 
[29] to more modern PSPNet [41] and UPerNet [42]. 
The advantage of the latter lies in the ability to ana-
lyze images at different scales, correctly identify both 
small and very large objects simultaneously, and take 

Table 1
Distribution of minerals on labeled photographs of polished sections in the LumenStone S1, S2, and S3 sets 

for solving segmentation problems (the distribution when divided into training and test datasets is Provided 
in square brackets)

Mineral Percentage in set S1 
[training, test], %

Percentage in set S2 
[training, test], %

Percentage in the S3 
set [training, test], %

Total percentage 
(S1 + S2 + S3), %

Nonmetallic minerals 16.4 [12.6. 3.8] 9.8 [8.0. 1.8] 11.4 [8.8. 2.6] 37.6

Chalcopyrite 2.0 [1.1. 0.9] 3.1 [2.7. 0.4] 0.9 [0.6. 0.3] 6

Galena 3.9 [3.2. 0.8] – 1.1 [0.9. 0.3] 5

Magnetite – 0.4 [0.4. 0.1] 0.1 [0.1. < 0.1] 0.5

Bornite 2.0 [1.7. 0.3] – 0.5 [0.4. 0.1] 2.5

Pyrrhotite – 8.9 [6.2. 2.7] – 8.9

Pyrite 12.9 [9.5. 3.4] – 1.9 [1.5. 0.4] 14.8

Pentlandite – 2.4 [1.6. 0.8] – 2.4

Sphalerite 13.8 [10.9. 2.9] – 0.5 [0.3. 0.2] 14.3

Arsenopyrite – – 3.9 [3.0. 1.0] 3.9

Tennantite 2.1 [1.6. 0.5] – – 2.1

Covellite – – 1.8 [1.4. 0.3] 1.8

Other (not used) – 0.1 0.1 0.2

https://mst.misis.ru/
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2. Adaptive methods for image calibration 
and preprocessing. One of the main problems en-
countered by the authors when working with prima-
ry data is high sensitivity of segmentation models 
to the color palette of images. Differences in color 
characteristics between training images and real im-
ages lead to a significant deterioration in the quality 
of mineral identification. The color and brightness 
characteristics of images are determined by many 
factors: microscope parameters, camera settings, 
lighting, etc.

A solution to this problem is to use automatic 
color correction based on the color difference be-
tween the received image and a known reference 
(e.g., [44]). 

We proposed the method for correcting color dis-
tortions in [45]. The main idea is to construct a tran-

sition matrix (Color Correction Matrix, CCM)  [46] 
between the color spaces of a distorted and reference 
images (images from the training set are taken as 
reference).

The process includes extracting the averaged 
colors of minerals and the background using partial 
labeling, linearizing colors through gamma correc-
tion (γ = 2.2), and calculating the affine transfor-
mation. The minimization problem is solved in LAB 
space, using the sum of the squares of color differ-
ences calculated using the CIEDE2000 formula [47] 
as a loss function. The work uses a 4×3 matrix with 
initial approximation initialization based on the 
“white balance” method [46]. The final step is to 
transform the distorted image through matrix mul-
tiplication by the previously calculated color correc-
tion matrix. 

Fig. 1. Example of a polished section image segmentation with the trained PSPNet model:
a – image; b – error map (correctly recognized areas are highlighted in green, segmentation errors are highlighted in red);  

c – mineral mask (expert annotation); d – model prediction

а

b

c

d

Nonmetallic minerals	 Chalcopyrite	 Galena	 Pyrite	 Sphalerite	 Tennantite
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Fig. 2. An example of how the proposed color calibration method works: 
a – original image taken with alternative equipment; b – reference image; c – initial image after applying the method

а b c

Fig. 3. Alignment of XPL images of arsenopyrite: top row – images of arsenopyrite in different orientations;  
bottom row – images of arsenopyrite in different orientations after alignment. Four different orientations out  

of 24 are presented for each image with anisotropic minerals

The proposed method allows preserving color 
differences that are critical for mineral identification 
(Fig. 2), while minimizing the influence of lighting 
changes and equipment settings. The algorithm sup-
ports two operating modes: an individual correction 
for each image and a “calibration” mode for a series 
of images, where the correction matrix is calcula- 
ted once and applied to the entire group. The me- 
thod does not require any prior training, and pro-
cessing a single image takes less than 10 seconds on 
an Intel Xeon Gold 6226R CPU.

3. Methods for joint processing of hetero-
geneous images. Many minerals are identified not 
only by their color and reflectivity, but also by the 
presence or absence of anisotropic properties. An-
isotropy manifests itself in the ability of minerals 
to “fade” in doubly polarized light (crossed nicols) 
when the optical axes of a mineral coincide with the 
direction of the microscope polarizers. This property 
is a key to distinguishing minerals with similar re-
flectance and color parameters. For example, pyrite 
(isotropic) and marcasite (anisotropic) have similar 
optical characteristics but differ in the manifestation 

of anisotropy. Similarly, pyrite and arsenopyrite, al-
though they have slightly different reflectivity and 
color, can also be reliably separated based on the 
manifestation of anisotropy by arsenopyrite. 

We developed a neural network segmentation 
method that uses XPL and PPL images as additio- 
nal input data for the segmentation neural net-
work to improve the accuracy of mineral segmen-
tation [48]. The key step in this method is to align 
images taken at different angles of rotation with 
the reference PPL image. For this purpose, SIFT al-
gorithms [49] were used to detect stable key points 
in images, and RANSAC algorithm [50] was used to 
calculate the affine transformation between ima- 
ges based on the found matches. Thus, all images 
were referred to a single coordinate system (Fig. 3).  
Then XPL images referred to a single coordinate 
system were used as additional input channels for 
a  neural network based on the architecture pro-
posed earlier by the authors [29]. The used  hyper-
parameters are described in [29], and the model 
training time is approximately 6 hours with the use 
of a NVidia A6000 GPU.
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sists of two main stages: image alignment and fur-
ther post-processing to improve visual perception. 
At the first stage, with the use of calibration images, 
geometric distortions of images are corrected using 
the Brown–Conrady model [53], and photometric 
distortions are corrected using flat field compen-
sation [54]. Then, using the LoFTR neural network 
[55], common key points are found in images that 
have overlapping areas. These are used to calcu-
late perspective transformations (homographies)  
for pairs of adjacent images using RANSAC [50], af-
ter which all images are transformed into the coor-
dinates of a  single image (reference image). Finally, 
global panorama optimization is performed to mini-
mize the alignment errors. The result of this stage is 
a preliminary panorama, a collage. The second stage 
involves improving the initial panorama. The diffe- 
rences in exposure between images are compensa- 
ted. The seams between images are masked by con-
structing the least noticeable seam using the graph-
cut method [56], taking into account the differences 
in color and gradients of neighboring pixels. The fi-
nal step is to blend the images near the joints of the 
panorama tiles to remove any remaining stitching 
artifacts. The LumenStone P1 dataset, compiled for 
the panorama construction, was used to test the al-
gorithm. The method does not require prior training, 
and the processing speed for a single panorama con-
sisting of 25 images at an Intel Xeon Gold 6226R CPU 
is approximately 5 minutes.

5. Additional methods for processing and ana-
lyzing images of polished sections. The application 
of deep learning methods for mineral segmentation in 
images requires accurate annotation of a large number 
of images, which is a labor-intensive process. To sim-

4. Methods for creating panoramic images. 
The average polished section area is several square 
centimeters, with typical x50 magnification. Under 
such conditions, only a small part of a polished sec-
tion, measuring a few square millimeters, is visible in 
each photograph. The use of photographs covering 
a large area of a sample would allow more accurate 
information to be obtained about the distribution 
of minerals in a sample and their relative positions, 
which would have a positive effect on the quality of 
the analysis.

Scanning electron microscopes (SEM) can be 
used to obtain large images in geology, but such 
equipment is very expensive, structural and textural 
features may be lost due to the nature of the method, 
and the identification of mineral phases requires ad-
ditional effort. Therefore, like other researchers [51], 
we have opted for software stitching series of over-
lapping images into a single panorama.

Currently, there are many examples of software 
for automatic stitching disparate photos into a sin-
gle panoramic image. These include Adobe Photo-
shop, Fiji / ImageJ, and many others. However, using 
third-party software has a number of disadvantages. 
Powerful tools such as Adobe Photoshop can overly 
transform a panorama (unnaturally change colors, 
remove important details, mistaking them for ar-
tifacts of stitching). Integrating a third-party im-
plementation into own system is tricky and it also 
makes it impossible to make the changes needed 
to the algorithm to fit the specifics of the problem 
you’re trying to solve. 

We developed our own algorithm for stitching 
photographs into a panoramic image of the surface 
of a polished section [52] (Fig. 4). The algorithm con-

Fig. 4. Illustration of the developed method for constructing panoramas:  
on the left, several images of the same polished section, taken with overlap; on the right, the constructed panorama

https://mst.misis.ru/


240

ГОРНЫЕ НАУКИ И ТЕХНОЛОГИИ
MINING SCIENCE AND TECHNOLOGY (RUSSIA)

Korshunov D. M. et al. From visual diagnostics to deep learning...2025;10(3):232–244

https://mst.misis.ru/

eISSN 2500-0632

plify the annotation process and create a segmentation 
model capable of recognizing the main ore minerals, 
the authors are developing a method of accelerated in-
teractive annotation using superpixel clustering based 
on the SLIC [57] and Felzenswalb [58] methods. A geo- 
logist roughly annotates minerals with strokes, labeling 
entire areas of an image with the label of a particular 
mineral based on the scribble data and the superpixel 
map. The user adjusts the method's predictions until 
the final annotation is obtained. A distinctive feature of 
this approach is multi-scale clustering, which allows to 
quickly label both large homogeneous areas and small 
fragments, automatically breaking large clusters into 
smaller ones as needed.

One can also reduce the labor costs of data anno-
tating by extending the training set with partially an-
notated data. The main idea behind this approach is 
to highlight areas of uncertainty (lack of confidence) 
in the trained segmentation model on images. The 
authors suggest highlighting areas of uncertainty in 
images [59] using a hyperbolic radius [60] that reduces 
the scope of annotation to 5–10% of the original image 
(Fig. 5).

The final stage after recognizing and segmenting 
all minerals in the images is the statistical analysis 
of an image. It is responsible for conducting quan-
titative analysis to assess the areal ratio of mineral 
phases and their particle size analysis with separating 
fractions by size class for each mineral. This stage is 
currently under development.

Findings
The result of the authors' research into the au-

tomatic analysis of microscopic images of geological 
polished sections to determine mineral composition 
was the creation of an open image dataset called Lu-
menStone and a number of algorithms and methods 
that solve the main problems encountered:

1. Neural network methods for mineral seg-
mentation. A convolutional neural network model 
for mineral segmentation and a special method for 

sampling training data have been developed, allowing 
the existing class imbalance to be neutralized. The ac-
curacy of mineral segmentation according to the IoU 
metric was as follows: non-metallic minerals – 0.912, 
bornite – 0.938, chalcopyrite – 0.899, galena – 0.905, 
magnetite – 0.650, pentlandite – 0.790, pyrrhotite – 
0.928, pyrite – 0.964, sphalerite – 0.922, tennantite – 
0.882. The overall pixel accuracy (PA) of the segmenta-
tion was 0.96. The differences in mineral identification 
results can be explained by the difference in the size of 
the training sets used for LumenStone S1 and Lumen-
Stone S2.

2. Adaptive methods for image calibration 
and preprocessing. An algorithm has been deve- 
loped for adapting images of polished sections ob-
tained under different shooting conditions using par-
tial user annotation. Pixel segmentation accuracy for 
distorted images increased from 0.29 (before) to 0.87 
after adaptation using annotation covering approxi-
mately 30–35% of the image.

3. Methods for joint processing of heteroge-
neous images. The developed algorithm for seg-
menting anisotropic minerals using additional rota- 
ted XPL images improved the quality of anisotropic 
mineral segmentation by 3–12%. It has been shown 
that the best results can be achieved by using 6 addi-
tional rotated images.

4. Methods for creating panoramic images. 
A  method for constructing panoramic microscopic 
images of polished sections has been developed. The 
root mean square error of alignment of panorama 
tiles from 25 images was 0.5–0.6 px. The resulting 
panoramas have a resolution of 12000×8000 pixels 
and can be used for automatic mineral segmentation. 
The implemented method does not have the disad-
vantages of less specialized solutions such as Adobe 
Photoshop, Fiji, and Panorama Studio.

5. Additional methods for processing and ana-
lyzing images of polished sections. A prototype 
method for interactive annotation of polished section 
images has been developed, which significantly speeds 

Fig. 5. The result of uncertainty area assessment method: 
a – original image; b – prediction of segmentation model uncertainty areas; c – areas for manual labeling

а b c
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up the process of preparing data for training segmen-
tation models. A method for automatically searching 
for areas of uncertainty has also been developed, al-
lowing image annotation to be prioritized and signifi-
cantly reducing the scope of annotations required.

Conclusion
This paper presents the authors’ experience in 

developing a set of methods for the automatic anal-
ysis of images of polished sections for the identifi-
cation of ore minerals. The developed segmentation 
method based on a convolutional neural network is 
capable of identifying nine ore minerals (with correct 
distinguishing between ore minerals and non-metal-
lic phases) with an IoU accuracy = 0.88 and PA = 0.96. 
The potential of using additional information from 
XPL images to increase the accuracy of anisotropic 
mineral identification was demonstrated. 

The developed methods of interactive annota-
tion and image adaptation significantly accelerate 
and improve the training and use of segmentation 
models on new data. It is worth noting the method 
developed by the authors for obtaining panoramic 
images of polished sections, which allows detailed 
images of the entire surface of polished sections to 
be obtained in high resolution without expensive 
equipment. Unlike existing software solutions, this 
method does not distort the final panorama that has 
a positive effect on the segmentation results. Wor- 

king with large-format images opens up new possi-
bilities for the automatic analysis of images of pol-
ished sections.

The results obtained justify the need for further 
development of the area under consideration and 
form the basis for the creation of an intelligent quan-
titative assessment system capable not only of iden-
tifying minerals and calculating their areal fractions 
and performing particle-size analysis by size class, but 
also determining the types of minerals intergrowths. 
The implementation of this methodology will open up 
new possibilities in digital petrography, enabling fast, 
economical, and reproducible mineralogical analysis 
on optical microscopes in reflected light. Ultimately, 
this will enable the formation of unified criteria for 
analyzing the structural and textural characteristics 
of mineral associations for genesis comparison of dif-
ferent deposits.

Currently, the authors are integrating most of the 
methods and algorithms described in this paper into 
their PathScribe software platform [61]. This platform 
is a cloud-based client-server solution with cross-plat-
form clients for working with ultra-high-resolution 
images and is designed for universal use in both sci-
entific and educational applications. The authors 
hope that the ability to work with panoramic images 
of polished sections using convenient tools for anno-
tation and fully automatic analysis will be useful for 
geologists of various specializations.
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