Effects of Intermittent Inelasticity when Propagating Seismic Wave in Low Velocity Zone


https://doi.org/10.17073/2500-0632-2019-1-31-41

Full Text:


Abstract

The study of atypical manifestations of rock inelasticity improves understanding of the physical mechanisms of seismic wave propagation and attenuation in real environments. In the field experiments, the propagation of longitudinal wave at frequency of 240–1000 Hz between two shallow boreholes in low speed zone was investigated. The measurements were performed using a piezoelectric pulse emitter and similar receiver tools positioned in the boreholes. "Stress-time" σ(t) digital responses were recorded by the open channel with microsecond temporal resolution. The unusual short-period variations of amplitude in the form of sharp flattening wave front, stress drop, or plateau of different width (tens of microseconds) were detected in the wave profile. These low-amplitude variations in the waveform were regarded as manifestations of hopping intermittent inelasticity. This inelastic process was assumed to affect the waveform transformation. The contribution of hopping inelasticity depends on the applied stress magnitude, i.e. in this case, the seismic response amplitude. The mechanism of hopping inelasticity at small strains may be explained by microplasticity of rocks. The findings obtained represent a new step in understanding of physics of seismic and acoustic wave propagation in rocks and can be useful for handling of applied problems in geophysics and mining.

About the Author

E. I. Mashinskii
The Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences (IPGG SB RAS).
Russian Federation
Novosibirsk.


References

1. Barannikova S. A., Nadezhkin M. V., Zuev L. B. On localization of plastic deformation during compres¬sion of LiF crystals: Solid State Physics, 2010, v. 52, No. 7, pp. 1291-1294. (in Russ.)

2. Voznesensky E. A. Soil behavior under dynamic loads: Moscow, Moscow University Press, 1998, 320 p.

3. Golovin, Yu. I., Dub O. N., Ivolgin V. I., Korenkov V. V. Tyurin A. I. Kinetic features of deformation of solids in nano-micro-volumes, Solid-state physics, 2005, v. 47, No. 6, pp. 961-973. (in Russ.)

4. Gushchin V. V., Pavlenko, O. V. Study of nonlinear elastic properties of rocks by seismic data, Modern Seismology, Achievements and Challenges: Moscow, 1998, v. 13. (in Russ.)

5. Kondratyev O. K., 1986, Seismic waves in absorbing media: Nedra Press, Moscow, 176 p. (in Russ.)

6. Lebedev S. V., Savich S. V., Alloy Al-3%Mg intermittent deformation parameters in the temperature range (210-350) K: Visnyk KhNU, No. 915, "Physics" series, 2010, v. 14, pp. 91-95. (in Russ.)

7. Mashinsky E. I. Amplitude-dependent attenuation of longitudinal and transverse waves in dry and saturated sandstone under pressure: Geology and Geophysics, 2009, v. 50, pp. 950-956. (In Russ.)

8. Nikolaev A. V. Problems of nonlinear seismic: Moscow, Nauka Press, 1987, 288 p. (in Russ.)

9. Peschanskaya N. N., Smirnov B. I., Shpeizman V. V. Hopping microdeformation in nanostructured materials: FTT, 2008, v. 50, No. 5, pp. 815-819. (in Russ.)

10. Barsoum M. W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, Wiley-VCH Verlag GmbH, 2013.

11. Braccini S., et al.. The maraging-steel blades of the Virgo super attenuator. Meas. Sci. Technol., 2000, 11, pp. 467-476.

12. Bradby J. E. and Williams J. S., 2004, Pop-in events induced by spherical indentaton ib compound semiconductors. J. Mater. Res., 19. No 1, pp. 380-386.

13. Brantut N., Schubnel A., and Y. Gueguen, 2011. Damage and rupture dynamics at the brittle-ductile transi¬tion: The case of gypsum. Journal of Geophysical Research, Vol. 116, B01404.

14. Derlet P. M., Maaf R., 2013, Micro-plasticity and intermittent dislocation activity in a simplied micro structural model, arXiv: 1205.1486v2 [cond- mat.mtrl-sci] 8 Feb 2013, pp. 1 - 33.

15. Dhakal H. N., Zhang Z. Y., Richardson M.O.W., 2006. Nanoindentation behaviour of layered silicate rein¬forced unsaturated polyester nanocomposites. Polymer Testing, 25, pp. 846 - 852.

16. Golovin I. S., Sinning H.-R., Goken J., Riehemann W., 2004. Fatigue-related damping in some cellular metallic materials. Materials Science and Engineering, A 370, p. 537 - 541.

17. Guyer R. A., McCall K. R., Boitnott G. N., 1995. Hysteresis, Discrete Memory and Nonlinear Wave Propagation in Rock: a New Paradigm, Phys. Rev. Lett., 74, 17, pp. 3491-3494.

18. Guyer R. A., Johnson P. A., 1999. Nonlinear mesoscopic elasticity: Evidence for a new class of materials Physics Today 52, 4, pp. 30-36.

19. Jackson I., Faul U. H., Fitz Gerald J. D., Tan B. H. Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. Specimen fabrication and mechanical testing // J. Geophys. Res., 2004, v. 109, B06201, pp. 1-17.

20. Johnston D. H., Toksoz M. N., 1980. Thermal cracking and amplitude dependent attenuation. Journal of Geophysical Research, 85, pp. 937 - 942.

21. Lorenz D., Zeckzer A., Hilpert U., Grau P., 2003, Pop-in effect as homogenous nucleation of dislocationsduring nanoidentation. Physical Review, B 67, 172101.

22. Mashinskii E. I., 2008. Amplitude-frequency dependencies of Wave Attenuation in Single-Crystal Quartz: Experimental Study. Journal of Geophysical Research, 113, B11304.

23. Mavko G. M, 1979. Friction Attenuation: An Inherent Amplitude Dependence. Journal of Geophysical Research 84 (9), pp. 4769-4775.

24. McCall K.R., Guyer, R. A., 1994. Equation of State and Wave Propagation in Hysteretic Nonlinear Elastic Materials, J. Geophys. Res., 99, B 12. 23,887-23,897.

25. Nishino Y., Asano, S., 1996. Amplitude-dependent internal friction and microplasticity in thin-film materials. Journal de Physique IV, 6, pp. 783-786.

26. Ostrovsky L. A., Johnson, P. A., 2001. Dynamic nonlinear elasticity in geomaterials. La Rivista del Nuovo Cimento 24, 4, 7.

27. Qiang J. B., Xie G. Q., Zhang W., Inoue A., 2007. Unusual room temperature ductility of a Zr-based bulk metallic glass containing nanoparticles. Applied Physics Letters, 90, 231907, pp. 1-3.

28. Sapozhnikov K. V., Vetrov V. V., Pulnev S. A., Kustov S. B., 1996. Acousto-pseudoelastic effect and internal friction during stress-induced martensitic transformations in Cu-Al-Ni single crystals. Scripta Materialia., 34 (10), p. 1543-1548.

29. Smirnov B. I., Shpeizman V. V., Peschanskaya, N. N., Nikolaev R. K., 2002. Effect of magnetic field on microplastic strain rate for C60 single crystals. Physics of the Solid State, 44 (10), pp. 2009-2012.

30. Sheng-Nian Luo J.G. Swadener, Chi Ma, Oliver Tschauner, 2007. Examining crystallographic orientation dependence of hardness of silica stishovite. Physica, B 390, 138-142.

31. Tutuncu, A.N., Podio, A.L., Sharma, M.M., 1994. An experimental investigation of factors influencing compressional- and shear-wave velocities and attenuations in tight gas sandstones. Geophysics, 59 (1), pp. 77-86.

32. Vodenitcharova T., Zhang L.C., 2004. A new constitutive model for the phase transformations in mono¬crystalline silicon. International Journal of Solids and Structures, 41, pp. 5411-5424.

33. Wang W., 2003. Deformation behavior of Ni3Al single crystal during nanoindentation. Acta Materialia, 51, pp. 6169-6180.

34. Winkler, K.W., Nur, A., Gladwin, M., 1979. Friction and seismic attenuation in rock. Nature 274, pp. 528-531.

35. Xu H., Day S.M., Minster, J.-B.H., 1998. Model for Nonlinear Wave Propagation Derived from Rock Hysteresis. Measurements Journal of Geophysical Research, 103, (B 12), 29,915-29,929.

36. Yarushina V.M., Podladchikov Y.Y., 2010, Plastic yielding as a frequency and amplitude independent mechanism of seismic wave attenuation. Geophysics, 75, 3, pp. 51-63.

37. Zaitsev V. Yu., Nazarov V. E., Talanov V. I., 1999. Experimental Study of the self-action of seismoacoustic waves. Acoustic Physics, 45 (6), pp. 720-726.


Supplementary files

For citation: Mashinskii E.I. Effects of Intermittent Inelasticity when Propagating Seismic Wave in Low Velocity Zone. Gornye nauki i tekhnologii = Mining Science and Technology (Russia). 2019;4(1):31-41. https://doi.org/10.17073/2500-0632-2019-1-31-41

Views: 185

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0632 (Online)