The Study of Regularities of Changing Melting Enthalpy of Intermetallides of Magnesium–Lantanoids Systems Rich in Magnesium

Full Text:


Providing a reasonable forecast of the required properties of intermetallic compounds (hereinafter also referred as intermetallides or IM) is an important scientific and commercial problem, which may be solved by focusing scientific researches and permanent generation of knowledge in this field. To date, researches in chemistry and physics of IM have been developing empirically for a simple reason, due to the complexity of describing the relationship between the crystal structure and chemical bonds, and, therefore, between all the properties of IM. IM is mainly characterized by metal type of chemical bond, as well as specific metallic properties. At the same time, among IM, there are also salt-like compounds with ionic bond, i.e. valency compounds formed from elements of different chemical nature, being stoichiometric compounds. The examples of such compounds are compounds with intermediate bond type, i.e. ionmetal and covalently-metal, as well as covalent bond types (e.g., NaAu). In the series of compounds of Mg with elements of the IV subgroup, along with decreasing the difference in the electrochemical characteristics of the components, the change in the IM properties is observed, from those peculiar to ionic compounds (for example, Mg2Si, Mg2Ge) to the properties typical of metals (Mg2Pb), etc. Due to the fact that lanthanides form the largest group of elements of the periodic system occurring in nature, and Mg is a relatively active chemical element in terms of IM formation (for example, it forms three IM with cadmium - Mg3Cd, MgCd and MgCd3), its oxides in slag provide decreasing average silicon content and increasing the stability of the silicon content in iron, being an important process indicator in the course of physicochemical reactions occurring in a blast furnace (for example, in the process of iron production). The presence of Si impurity (along with O, Au, Ti, V, Zr) produces the greatest effect on efficiency of solar cells, etc. [1–3]. Based on the foregoing, it is very important to study the state function, i.e. enthalpy of magnesium-lanthanide systems, rich in magnesium, and, based on the results of computer simulation, taking into account molecular dynamics method and other similar studies [4–8], to model regularities of changes in melting enthalpy of IM of the mentioned systems. The issue of modeling the pattern of change in melting enthalpy of IM of magnesium-lanthanide (Mg-Ln) magnesium-rich systems is considered based on systematic analyzing melting enthalpy of IM of Mg-Ln magnesium-rich system, including Mg2Ln, Mg3Ln and equimolar compound MgLn, implemented using semi-empirical method developed by N.S. Poluektov.

About the Authors

I. R. Ismoilov
Tajik Technical University named after academician M. S. Osimi
senior lecturer of the Department of Metallurgy

E. S. Dodkhoev
Tajik Technical University named after academician M. S. Osimi
senior lecturer of the Department of Electric Power Engineering of the Technical College

R. A. Ismoilov
State Scientific Institution "Center for the Study of Innovative Technologies" at the Academy of Sciences of the Republic of Tajikistan

S. Z. Nazhmudinov
Academy of Sciences of the Republic of Tajikistan
Cand Sci. (Tech.), Headof the laboratory of Energy and energy saving of the Institute of water problems, hydropower and ecology

A. B. Badalov
Tajik Technical University named after academician M. S. Osimi
Dr. Sci. (Chem.), prof., Department "General and inorganic chemistry"


1. Goncharov B. F., Solomakhin I. S. Production of pig iron. Moscow, Metallurgy Publ., 1965, 368 p. (in Russ.).

2. Vasiliev V. E. Blast furnace smelting based on stable slags. Kiev, State Publishing House for Technical Literature, 1956, 260 p. (in Russ.).

3. Parkhomenko Yu. N. Physics and technology of photonics instruments: solar energy and nanotechnologies. Textbook. / Parkhomenko Yu. N. Polisan A. A. Moscow, MISiS Publishing House, 2013, 142 p. (in Russ.).

4. Anastasiou N., Fiuchaur D. Programs for the dynamic simulations of liquids and solids. II MDIONS: Rigid ions using the Evalid sum // Comp. Phys. Commun. 1982, no. 25, pp. 158–176.

5. Woodcock L. V., Angell K. A., Cheeseman P. Molecular dynamics studies of the vitreons state: Simple ionics systems and silica // The Gournal of Chemical Physics, 1976, no. 65, pp. 1565–1577.

6. Belashchenko D. K., Ostrovski O. I., Skvortsov L. V. Molecular dynamics simulation of binary CaO–FeO, MgO–SiO2, FeO–SiO2, CaO–SiO2 and ternary CaO–FeO–SiO2 systems // Termochimica Acta. 2001, vol. 372, pp. 153–163.

7. Zhang L., Jahanshahi S. Review and modeling of viscosity of silicate melts. Part I. Viscosity of binary and ternary silicates containing CaO, MgO and MnO // Meter. Trans. B. 1998. vol. 29, no. 1, pp. 177–186.

8. Gutierres J., Romero-Serrano A., Plascencia G., Chaves F., Vargas R. Thermodynamical model of ternary silicate systems // ISIJ Int. 2000, vol. 40, no. 7, pp. 664–669.

9. Kornilov I. I., Matveeva N. M., Pryakhina L. I., Polyakova R. S. Metallochemical properties of the periodic system elements. Moscow, Nauka Publ., 1966, 272 p. (in Russ.).

10. Skakov Yu.A. Intermetallides. Chemical Encyclopedia in 5 volumes. Knunyants, I. L. (Ch. Ed.). M., Soviet Encyclopedia Publ., 1990, v. 2: Duff-Copper, 671 p. (in Russ.).

11. Intermetallides. Kazakhstan, National Encyclopedia. Almaty, Kazak encyclopediyasy [Kazakh Encyclopedia] Publ., 2005, v. ΙΙ (in Russ.).

12. Kripyakevich P. I. Structural types of intermetallic compounds. Moscow, 1977 (in Russ.).

13. Teplyakov F. K., Oskolskikh A. P., Kaluzhsky N. A. [et al.]. About mechanism of formation of intermetallic compounds and their transformation in the process of preparation and use of Al – Ti – B and Al – Ti master alloys. Tsvetnye Metally [Nonferrous Metals], 1991, no. 9, p. 54. (in Russ.).

14. Sidelnikov S. B., Dovzhenko N. N, Voroshilov D. S. [et al.]. The study of the metal structure and evaluation of the properties of test samples of Al – REM system alloy, obtained by combined casting/pressing methods. Bulletin of Magnitogorsk State Technical University named after G.I. Nosov, Magnitogorsk, 2012, no. 1, pp. 51-55. (in Russ.).

15. Belopukhov S. L., Starykh S. E. Physical and colloidal chemistry. Basic terms and definitions. Textbook. M., Prospect, 2018, 256 p. (in Russ.).

16. Klyucharov Ya. V., Chen-Di-Jian. On phase equilibrium in MgO – Cr2O3 – Fe2O3 system. (in Russ.).

17. Strott A. J. Prod. Engng, 1960, no. 43.

18. Ryschkewitsch E. Oxide ceramics: Phisical chemistry and Technology. New-Jork–London, 1960.

19. Atlas L., Journal. Geol., 1952, vol. 60, no. 2, p. 127.

20. Boyd F. R., J. L. England, Carnegie Inst. Washington, year book 59, 47, 1959–1960.

21. Boyd F. R., J. L. England, Carnegie Inst. Washington, year book 60, 115, 1960–1961.

22. Davis B. T. C., J. L. England, Carnegie Inst. Washington, year book 62, 119, 1962–1963.

23. Morimoto N., Carnegie Inst. Washington, year book 58, 197, 1958 – 1959.

24. Ringwood A.E., Journal. Geophysics Rea., 67, № 10, 4005, 1962.

25. Ringwood A.E., M. Seabrook, Nature, 196, № 4857, 883, 1962.

26. Physico-chemical properties of elements. Handbook. Ed. Samsonova G. V. Kiev, 1965, 806 p. (in Russ.).

27. Vozdvizhensky V. M. Forecast of binary phase equilibrium diagrams. M., Metallurgy Publ., 1975, 222 p. (in Russ.).

28. Burylyov B. P. Thermodynamics of metallic interstitial metal solutions. Rostov-on-Don, Rostov University Publ., 1984, 160 p. (in Russ.).

29. Vozdvizhensky V. M. General patterns in the structure of phase equilibrium diagrams of metal systems. M., Nauka Publ., 1973, 144 p. (in Russ.).

30. Budanova G. M., Volodarskaya, R. S., Kanaev, N. A. Analysis of aluminum and magnesium alloys. Moscow, Metallurgy Publ., 1966, 360 p. (in Russ.).

31. Phase equilibrium diagrams of binary metal systems / Ed. N. P. Lyakisheva. Moscow: Mashinostroenie (Machine Building) Publ., 1996, 1997, 2001, v. 1-3, 992 p., 1024 p., 1320 p. (in Russ.).

32. Poluektov N. S., Meshkova S. B., Korovin Yu. V., Oksinenko, I. I. Correlation analysis in physical chemistry of compounds of trivalent lanthanide ions. DAN USSR, 1982, v. 266, no. 5, pp. 1157-1159. (in Russ.).

33. Meshkova S. B., Poluektov N. S., Topilova Z. M., Danilkovich M. M. Gadolinium “dog-leg” in row of trivalent lanthanides. Coord. Chemistry, 1986, v. 12, Issue. 4, pp. 481-484 (in Russ.).

34. Badalov A. B., Gafurov B. A., Mirsaidov I. U., Hakerov I. Thermal stability and thermodynamic properties of this tetrahydrofuranates lanthanide boro-hydrides. Inter. J. of Hydrogen energy, 2011, vol. 36, iss. I, pр. 1217-1219.

35. Ismoilov I. R., Umedov Sh. T., Akramov M. Yu., Badalov A. Thermochemical properties of intermetallic compounds of Mg2Ln composition (Ln-lanthanides). Proceedings of Tajikistan scientific-practical conference devoted to the 10th anniversary of Mining and Metallurgical Institute of Tajikistan. Chkalovsk, 2016, pp. 36-37 (in Russ.).

36. Ismoilov I. R., Dodkhoev E. S., Obidov Z. R., Badalov A. Regularities of changing temperature and enthalpy of melting of intermetallic compounds of MgLn and Mg2Ln composition (Ln-lanthanides). Proceedings of Tajikistan scientific-practical conference "Problems of Materials Science in the Republic of Tajikistan." IKh AN RT Publ., 2016, pp. 149-152 (in Russ.).

37. Bayanov A. P., Slavkina V. I. On thermodynamics of liquid rare-earth metal alloys with strong chemical interaction of components. Proceedings of the conference devoted to the centenary of the All-Union Chemical Society named after D.I. Mendeleev. Novokuznetsk, 1969, pp. 25-39 (in Russ.).

38. Bayanov A. P. Calculation of formation enthalpy of rare-earth elements compounds based on crystallochemical characteristics. Proceedings of the USSR Academy of Sciences, Neorgan. Mater., 1973, vol. 9, no. 6, pp. 959-963 (in Russ.).

Supplementary files

For citation: Ismoilov I.R., Dodkhoev E.S., Ismoilov R.A., Nazhmudinov S.Z., Badalov A.B. The Study of Regularities of Changing Melting Enthalpy of Intermetallides of Magnesium–Lantanoids Systems Rich in Magnesium. Gornye nauki i tekhnologii = Mining Science and Technology (Russia). 2019;4(2):111-121.

Views: 120


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2500-0632 (Online)