Diagnostics of Thermal Condition of Electromechanical Machinery


Full Text:


The paper is devoted to studying issues of machinery thermal state monitoring using generalized approach to objectives of electromechanical system (EMS) diagnostics based on current temperature values. Generalized mathematical model of EMS (a homogeneous body or a multi-weight estimated heat balance diagram) for various operation conditions of a facility allows to identify diagnostic indicators (criteria) for taking specific measures to stabilize its operation. Increasing efficiency of the facility thermal state monitoring can be achieved using noncontact measuring instruments to determine temperature distribution over the facility surface. Temperature distribution over an EMS facility surface enables concluding on maintenance necessity. For effective application of noncontact thermal-imaging equipment for diagnostics of EMS on the basis of the provisions presented in the paper, training program for specialists in thermometering of industrial facilities has been developed.

About the Authors

V. F. Borisenko
Donetsk National Technical University


A. I. Zemlyansky
Donetsk National Technical University

V. A. Sidorov
Donetsk National Technical University

E. V. Sidorova
Platov South-Russian State Polytechnic University (NPI)
Russian Federation



1. Baranski M., Polak A. Thermal diagnostic in electrical machines. PRZEGLДD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 87 NR 10/2011.

2. Dukovska L, Petkov V., Mihailov Em., Vasileva S. Image Processing for Technological Diagnosis of Metallurgical Facilities. Cybernetics and Information Technologies, Vol. 12, No 4, 2012, pp. 66-76.

3. Chou Y. and Yao L. Automatic Diagnostic System of Electrical Equipment Using Infrared Thermography, 2009 International Conference of Soft Computing and Pattern Recognition, Malacca, 2009, pp. 155-160.

4. Madding, Robert. Emissivity Measurement and Temperature Correction Accuracy Considerations, Infrared Training Center, 2002.

5. Neto E. T. W., Costa E. Da, Maia M. Influence of emissivity and distance in high voltage equipments thermal imaging, Transmission & Distribution Conference and Exposition: Latin America, 2006. TDC’06. IEEE/PES, 2006, vol. 0, pp. 1-4.

6. PAJANI, Dominique. 10 mars 2013 Thermographie Principes et mesure. Dans: Mesure de temperature», [en ligne], Editions T.I. [Paris, France], 2017, r2740, [Consulte le 06/09/2017], TIB542DUO, [base de donnees en ligne], disponible a l'adresse: http://www.techniques-ingenieur.fr/base-documentaire/mesures-analyses-th1/mesure-de-temperature-42542210/thermographie-r2740/.

7. PAJANI, Dominique et AUDAIRE, Luc., 10 mars 2013, «Thermographie Technologies et applications». Dans : «Mesure de temperature», [en ligne], Editions T.I. [Paris, France], 2017, r2741, [Consulte le 06/09/2017], TIB542DUO, [base de donnees en ligne], disponible a l'adresse : http://www.techniques-ingenieur.fr/base-documentaire/mesures-analyses-th1/mesure-de-temperature-42542210/thermographie-r2741/.

8. Introduction aux plans d'experiences [Ressource electronique] / Jacques Goupy, Lee Creighton. - 3e edition. Paris: Dunod : L'Usine nouvelle, 2006.

9. Introduction aux transferts thermiques : cours et exercices corriges / Jean-Luc Battaglia, Andrzej Kusiak, Jean-Rodolphe Puiggali. Paris : Dunod, 2010.

10. Electromechanical automation systems for stationary installations / Engineering and technosphere of the XXI century / Under the general. ed. V.F. Borisenko // Coll. of Sci. papers Int. scientific and technical conf. in the city of Sevastopol September 12-17, 2005 Donetsk: DonNTU, 2005.281 p. (in Russ.).

11. Chilikin M. G., Sandler A. S. General course of electric drive: a textbook for high schools. Moscow, 1981. 576 p. (in Russ.).

12. Klyuchev V. I. Electric Drive Theory: Textbook for High Schools. Moscow: Energoatomizdat, 1985 . 560 p. (in Russ.).

13. Borisenko A. I., Kostikov A. I., Yakovlev A. I. Cooling of industrial electric machines. Moscow: Energoatomizdat, 1983 . 296 p. (in Russ.).

14. Bespalov V. Ya., Moshchinsky Yu. A., Tsukanov V.I. Simplified mathematical model of non-stationary heating and cooling of the stator winding of an induction motor // Electricity. 2003. No. 4. Pp. 20-26. (in Russ.).

15. Bespalov V.Ya., Dunaikina EA, Moshchinsky Yu.A. Unsteady thermal calculations in electric machines / Ed. B.K. Klokova. Moscow: MPEI, 1987. 72 p. (in Russ.).

16. W. L. Chan, A. T. P. So, L. L. Lai, Three-dimensional thermal imaging for power equipment monitoring, IEE Proceedings, Generation, Transmission, and Distribution, Vol. 147, Iss., 6 November 2000, pp. 355-360.

17. Pragasen Pillay. Loss of life in induction machines operating with unbalanced supplies. IEEE transactions on energy conversion, Vol. 21, No. December 4, 2006.

18. Vija Mehta, Sanket Pandya, Nirav Meghpara. Thermal network model of electrical motor by lumped heat method. IJEDR, Vol. 4, Iss. 2, 2016.

19. Bouheraoua M., Zaouia M., Khaldi R., Benamrouche N. Experimental Study of Heating in Induction Motors for Several Load Conditions, 2019.

20. Ejiofor, Oti & Nnadi, Damian & Nwosu, Cajethan. Fundamentals of thermal modeling of induction machines. Int.conf. of electric power engeniring (ICEPENG 2015), October 14-16, 2015.

21. RD 153-34.0-20.364-00. The technique of infrared diagnostics of thermomechanical equipment. (in Russ).

22. GOST 26629-85. Buildings and constructions. Method of thermal imaging quality control of thermal insulation of building envelopes. (in Russ.).

23. SNiP II-3-79. Building regulations. Construction heat engineering. (in Russ.).

24. Yalyshev F. Kh. Optical methods of control of buildings and structures. Quality control of thermal protection. Leningrad: Stroyizdat. Leningra. Dep., 1988. 79 p. (in Russ.).

25. MU 34-70-184-87. Guidelines for testing thermal insulation of equipment and pipelines of thermal power plants. Moscow: Soyuztekhenergo, 1988 (in Russ.).

26. Operational circular Ts-01-94 (T) dated 05/06/1994. Organization of control over the condition and repair of lining and thermal insulation of equipment of thermal power plants in order to reduce heat loss and surface temperatures to normal values. (in Russ.).

27. OST 34 26.446-88. Lining of steam and hot-water stationary boilers. General technical requirements. Moscow: Informenergo, 1989. 14 p. (in Russ.).

28. Methods of inspection of chimneys of thermal power plants by visual method and using a thermal imager (Report under the agreement 96-137-901-025, 1st quarter of 1996). Moscow: ORGRES, PLIT, 1996 (in Russ.).

29. Experimental work on the existing chimney to determine heat loss during operating conditions (Report under the agreement 96-162-900-025, 2nd quarter of 1996) Moscow: ORGRES. PLATES, 1996 (in Russ.).

30. Guidelines for determining the state of heating networks of an underground installation using a known temperature of the soil surface above a heating main. Developed by ORGRES Firm (A. Alexandrov) and the Don Joint-Stock Company (V. Ivanov, V. Babenkov, I. Dunin). Moscow: ORGRES, 1991 (in Russ.).

31. RD 34.20.501-95. Rules for the technical operation of power plants and networks of the Russian Federation. 15th ed. Moscow.: ORGRES, 1996 (in Russ.).

32. Afonin A. V., Polyakov V. S. et al. Infrared thermography in power engineering, T. 1. Fundamentals of infrared thermography. SPb.: Publ. PEIPK, 2000 (in Russ.).

33. Gossorg J. Infrared thermography. Moscow: Mir, 1988 (in Russ.).

34. Bazhanov S. A. Infrared diagnostics of electrical equipment of switchgears. Library of Electrical Engineering, adj. to the journal "Energy". Moscow, 2000 (in Russ.).

Supplementary files

For citation: Borisenko V.F., Zemlyansky A.I., Sidorov V.A., Sidorova E.V. Diagnostics of Thermal Condition of Electromechanical Machinery. Gornye nauki i tekhnologii = Mining Science and Technology (Russia). 2019;4(3):188-201. https://doi.org/10.17073/2500-0632-2019-3-188-201

Views: 806


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2500-0632 (Online)