Features of Origination of Load on "Support-Interframe Shield” System


https://doi.org/10.17073/2500-0632-2019-3-202-212

Full Text:


Abstract

The features of originating load on “support-interframe shield” system in the process of formation of broken rock zone around a mine working were investigated by laboratory tests on models of equivalent materials and structural models. The role of interframe shield in the formation of frame support load has been revealed. It was found that a natural self-supporting arch is formed over interframe shields within the broken rock zone, which redistributes the load on the roof support frames, while the weight of rocks within the arch puts pressure on the interframe shields. The requirements for interframe shield of frame supports in mine workings have been developed.


About the Authors

Y. A. Petrenko
Donetsk National Technical University


N. N. Kasyan
Donetsk National Technical University


A. L. Kasyanenko
Donetsk National Technical University


References

1. Litvinsky G.G. Zakonomernosti formirovaniya nagruzki na krepi gornykh vyrabotok [Legitimacy of creation load on the support of mine workings]. Sbornik nauchnykh trudov DonGTU, 2016, no. 3 (46), pp. 5-15. (in Russ.).

2. Petrenko Y.A., Novikov A. O., Podkopayev S. V., Aleksandrov S. N. Ob osobennostyakh formirovaniya nagruzki na krep vyrabotok glubokikh shakht [On the features of the creation of the load on the support of deep mine workings] // Fiziko-tekhnicheskiye problemy gornogo proizvodstva, 2011, no. 14, pp. 133-141. (in Russ.).

3. Li C. Rock support design based on the concept of pressure arch. International Journal of Rock Mechanics and Mining Sciences, 2006, vol. 43(7), pp. 1083-1090. doi: 10.1016/j.ijrmms.2006.02.007.

4. Driban V. A., Novikov A. O. O mekhanizme poteri ustoychivosti gornykh vyrabotok i sposobakh upravleniya sostoyaniyem vmeshchayushchego ikh massiva [On the mechanism of loss of stability of mine workings and methods of controlling the situation of the rock masses] // Naukovi pratsi UkrNDMI NAN Ukraini, 2012, no. 11, pp. 275-292. (in Russ.).

5. Kong X., Liu Q., Pan Y., Liu J. Stress redistribution and formation of the pressure arch above underground excavation in rock mass. European Journal of Environmental and Civil Engineering, 2017. doi: 10.1080/19648189.2018.1541824.

6. Huang X., Zhang Z. Stress arch bunch and its formation mechanism in blocky stratified rock masses. Journal of Rock Mechanics and Geotechnical Engineering, 2012, vol. 4, no. 1, pp. 19-27. doi: 10.3724/SP.J.1235.2012.00019.

7. Kasyan N. N., Novikov A. O., Petrenko Yu. A., Shestopalov I. N., Reznik A. V. Metallicheskaya podatlivaya krep [Metal pliable support]. Patent UA, no. a201102997, 2013. (in Russ.).

8. Skobenko A. V., Khozyaykina N. V., Derysh V. V. Sovershenstvovaniye ramnoy krepi protyazhennykh vyrabotok ugol'nykh shakht [Improving the frame support of the long tunnel of coal mines]. Dnepropetrovsk, NGU, 2014, 96 p. (in Russ.).

9. Lisjak A., Grasselli G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. Journal of Rock Mechanics and Geotechnical Engineering, 2014, vol. 6, no. 4, pp. 301-314. doi: 10.1016/j.jrmge.2013.12.007.

10. Meshchaninov S. K. Metody modelirovaniya i upravleniya nadezhnost'yu funktsionirovaniya gornykh vyrabotok [Reliability and modeling methods functioning of mine workings]. Dnepropetrovsk, NGU, 2011, 360 p. (in Russ.).

11. Alshkane Y.M., Marshall A.M., Stace L.R. Prediction of strength and deformability of an interlocked blocky rock mass using UDEC. Journal of Rock Mechanics and Geotechnical Engineering, 2017, vol. 9, no. 3, pp. 531-542. doi: 10.1016/j.jrmge.2017.01.002.

12. Bidgoli M. N., Zhao Z., Jing L. Numerical evaluation of strength and deformability of fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering, 2013, vol. 5, no. 6, pp. 419-430. doi: 10.1016/j.jrmge.2013.09.002.

13. Kazerani T. Effect of micromechanical parameters of microstructure on compressive and tensile failure process of rock. International Journal of Rock Mechanics and Mining Sciences, 2013, vol. 64, pp. 44-55. doi: 10.1016/j.ijrmms.2013.08.016.

14. Khani A., Baghbanan A., Norouzi S., Hashemolhosseini H. Effects of fracture geometry and stress on the strength of a fractured rock mass. International Journal of Rock Mechanics and Mining Sciences, 2013, vol. 60, pp. 345-352. doi: 10.1016/j.ijrmms.2013.01.011.

15. Wang X., Zhao Y., Lin X. Determination of mechanical parameters for jointed rock masses. Journal of Rock Mechanics and Geotechnical Engineering, 2011, vol. 3, sup. 1, pp. 398-406. doi: 10.3724/SP.J.1235.2011.00398.

16. Makshankin D. N. Obosnovaniye krepleniya gornykh vyrabotok metallicheskoy krepyu iz shakhtnogo profilya. Avtoref. diss. kand. tekhn. nauk [The rationale for attaching mine tunnels with metal support from the mine profile. Cand. tech. sci. diss. abstract]. Kemerovo, 2012. 19 p. (in Russ.).

17. Demin V. F., Demina T. V., Aliyev S. B., Razumnyak N. L. Issledovaniye proyavleniy gornogo davleniya i kharaktera vzaimodeystviya razlichnykh vidov krepleniya s +vmeshchayushchimi porodami vokrug vyrabotki [Study occurrence of rock pressure and the feature of the interaction of various types of support with the rock mass around the tunnel]. Gornyy informatsionno-analiticheskiy byulleten (nauchno-tekhnicheskiy zhurnal), 2012. no. ov7. pp. 34-43. (in Russ.).

18. Zhang L. Evaluation of rock mass deformability using empirical methods. Underground Space, 2017, vol. 2, no. 1, pp. 1-15. doi: 10.1016/j.undsp.2017.03.003.

19. Litvinsky G. G., Smekalin Y. S. Effektivnost ramnykh konstruktsiy krepi [The effectiveness of frame support construction]. Sbornik nauchnykh trudov DonGTU. 2015. no. 1 (44). pp.18- 25. (in Russ.).

20. Koshelev K.V. Petrenko Y.A., Novikov A.O. Okhrana i remont gornykh vyrabotok [Protection and repair of mine tunnels]. Moscow, Nedra Publ., 1990, 218 p. (in Russ.).

21. Petrenko Y. A. Geomekhanicheskiye osnovy sokhraneniya ustoychivosti vyrabotok glubokikh shakht na razlichnykh etapakh ikh ekspluatatsii. Aftoref. diss. dokt. tehn. nauk [Geomechanical basis for preserve the stability of deep mine workings at various stages of their exploitation. Dr. tech. sci. diss. abstract]. Donetsk, 2008. 30 p. (in Russ).

22. Bidgoli M. N., Jing L. Anisotropy of strength and deformability of fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering, 2014, vol. 6, no. 2, pp. 156-164. doi: 10.1016/j.jrmge.2014.01.009.

23. Saeidi O., Rasouli V., Vaneghi R. G., Gholami R., Torabi S. R. A modified failure criterion for transversely isotropic rocks. Geoscience Frontiers, 2013, vol. 5, no. 2, pp. 215-225. doi: 10.1016/j.gsf.2013.05.005.

24. Ciz R., Siggins A. F., Gurevich B., Dvorkin J. Influence of microheterogeneity on effective stress law for elastic properties of rocks . Geophysics, 2008, vol. 73 (1): pp. E7-E14. doi: 10.1190/1.2816667.

25. Li Q., Shi W., Yang R. Deformation mechanisms in a coal mine roadway in extremely swelling soft rock. SpringerPlus, 2016, vol. 5(1), 1310. doi: 10.1186/s40064-016-2942-6.


Supplementary files

For citation: Petrenko Y.A., Kasyan N.N., Kasyanenko A.L. Features of Origination of Load on "Support-Interframe Shield” System. Gornye nauki i tekhnologii = Mining Science and Technology (Russia). 2019;4(3):202-212. https://doi.org/10.17073/2500-0632-2019-3-202-212

Views: 573

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0632 (Online)