Assessment of Gravity Dressability of Gold Ore - GRG Test


https://doi.org/10.17073/2500-0632-2020-2-92-103

Full Text:


Abstract

Gravity methods are widely used for processing of gold ores. But many aspects of these processing techniques require improvement. In the study, methods of fire assay, gravimetric, chemical, mineralogical analyses of gold ores were used. In terms of sulfide sulfur content and degree of sulfur oxidation, the gold ore is assigned to the low-sulfide type of ore in the primary zone. Mineralogical analysis showed the ore-bearing rock is represented by phyllite. Gold in the ore occurs mainly in the form of free large and fine particles. The fine gold is closely associated with pyrite. GRG test was carried out for assessing gravity dressability of the gold ore. The total gold recovery is more than 41 %. The highest gold recoveries were achieved at the first stage at 100 % of -1.6 mm ore grain size, and at the third stage at 80 % of -0.071 mm ore grain size. This indicates that both relatively large gold and fine free gold particles are present in the ore. This is also confirmed by mineralogical analysis. The GRG test results showed that the gold ore can be effectively concentrated using centrifugal concentrators. The level of gold recovery by gravity at the multi-stage ore grinding is quite high. When developing the ore concentration process flow sheet, gravity separation in centrifugal concentrators should be included.


About the Authors

B. N. Surimbayev
State Scientific and Production Concern for Industrial Ecology "Kazmekhanobr" (Branch of Republican State Enterprise "National Center for Integrated Processing of Mineral Resources of the Republic of Kazakhstan”)
Kazakhstan

Almaty



E. S. Kanaly
State Scientific and Production Concern for Industrial Ecology "Kazmekhanobr" (Branch of Republican State Enterprise "National Center for Integrated Processing of Mineral Resources of the Republic of Kazakhstan”)
Kazakhstan

Almaty



L. S. Bolotova
State Scientific and Production Concern for Industrial Ecology "Kazmekhanobr" (Branch of Republican State Enterprise "National Center for Integrated Processing of Mineral Resources of the Republic of Kazakhstan”)
Russian Federation


S. T. Shalgymbayev
State Scientific and Production Concern for Industrial Ecology "Kazmekhanobr" (Branch of Republican State Enterprise "National Center for Integrated Processing of Mineral Resources of the Republic of Kazakhstan”)
Kazakhstan

Almaty



References

1. Wills B. A., Finch J. A. Gravity Concentration. Wills’ Mineral Processing Technology. Elsevier; 2016. P. 223-244. DOI: 10.1016/B978-0-08-097053-0.00010-8.

2. Gravity Concentration. Chapter 4.GMP - Manual for Training Artisanal and Small-Scale Gold Miners. P. 34-52. Available from: http://artisanalmining.org/Repository/01/The_CASM_Files/CASM_Projects/Topic_Mercury/Pg34-52Ch4GravityConcentration.pdf. [Accessed 07.03.2020].

3. Verkhoturov M.V. Gravity concentration methods: Textbook for universities and colleges. Moscow: MAKS Press Publ.; 2006. P. 7-9. (In Russ.).

4. Shokhin V.I., Lopatin A.G. Gravity concentration methods. Moscow: Nedra Publ.; 1993. P. 5-6. (In Russ.).

5. Glembotskaya T.V. The emergence and development of gravitational methods of mineral processing. Moscow: Nauka; 1991. P. 121. (In Russ.).

6. Habashi F. Gold - An historical introduction. Developments in Mineral Processing. 2005;15:XXV-XLVII. DOI: 10.1016/S0167-4528(05)15045-5.

7. Surimbayev B. N., Baikonurova A. O., Bolotova L. S. Prospects for the development of the process of intensive cyanidation of gold-containing products in the Republic of Kazakhstan. News Natl. Acad. Sci. Repub. Kazakhstan, Ser. Geol. Tech. Sci. Almaty, Kazakhstan. 2017;4(424):133-141.

8. Melnikov V., Rogovoy A., Yastrebov K. Analysis of the experience of domestic and foreign researchers in gravitational and centrifugal concentration of dispersed minerals. Vestnik Irkutskogo gosudarstvennogo tehniceskogo universiteta. 2009;2(38): 178-181. (In Russ.).

9. Coulter T., Subasinghe G. K. N. A mechanistic approach to modelling Knelson concentrators. Miner. Eng. 2005;18(1):9-17. DOI: 10.1016/j.mineng.2004.06.035.

10. Sakuhuni G. et al. A novel laboratory procedure for predicting continuous centrifugal gravity concentration applications: The gravity release analysis. Int. J. Miner. Process. Elsevier B.V. 2016;(154):66-74. DOI: 10.1016/j.minpro.2016.07.004.

11. Knelson T. M. Gravity Concentrator - for maximising gold recovery. Available from: https://www.fls-midth.com/en-gb/products/precious-metals-recovery/knelson-semi-continuous-gravity-concentrator [Accessed 07.03.2020].

12. Ghaffari A., Farzanegan A. An investigation on laboratory Knelson Concentrator separation performance: Part 1: Retained mass modelling. Miner. Eng. Elsevier Ltd. 2017;112:57-67. DOI: 10.1016/j.mineng.2017.07.006.

13. Surimbayev B., Bolotova L., Mishra B., Baikonurova A. Intensive cyanidation of gold from gravity concentrates ina drum-type apparatus. News Natl. Acad. Sci. Repub. Kazakhstan, Ser. Geol. Tech. Sci. 2018;5(431):32-37. DOI: 10.32014/2018.2518-170X.7.

14. Noaparast M., Laplante A. R. Free gold particles selection and breakage functions estimation. Iran. J. Sci. Technol., Trans. B Eng. 2004;28(6B):667-677.

15. Fullam M. et al. Advances in Gravity Gold Technology. Gold Ore Processing. Elsevier; 2016. P. 301-314. DOI: 10.1016/B978-0-444-63658-4.00019-0.

16. Laplante A., Gray S. Advances in gravity gold technology. Developments in Mineral Processing. Elsevier. 2005;15:280-307. DOI: 10.1016/S0167-4528(05)15013-3.

17. Koppalkar S. et al. Understanding the discrepancy between prediction and plant GRG recovery for improving the gold gravity performance. Miner. Eng. Pergamon. 2011;24(6):559-564. DOI: 10.1016/j.mineng.2010.09.007.

18. Laplante A. R. A Standardized Test to Determine Gravity Recoverable Gold. Available from: http://knel-sonrussian.xplorex.com/sites/knelsongravity/files/reports/report21s.pdf [Accessed: 07.03.2020].

19. Laplante A. R., Dunne R. C. The Gravity recoverable gold test and flash flotation. In: Proceeding 34th Annual Meeting of the Canadian Mineral Processors. Ottawa, Canada; 2002. Available from: http://seprosys-tems.com/language/wp-content/uploads/2016/09/laplante.pdf. [Accessed: 10.03.2020].

20. Woodcock F.C., Frederick C. Use of a Knelson unit to quantify gravity recoverable gold in an ore. 1996. P.1674-1674.

21. Clarke J. A simplified gravity-recoverable-gold test. ProQuest, 2007.

22. Laplante A. R. et al. Practical considerations in the operations of gold gravity circuits. In: Proceedings 26th Annual Mineral Processors Conference. Ottawa, Paper. 1994;23.

23. Surimbaev B., Bolotova L., Esengaraev E., Mazyarkina L. A study of gravity separation of gold ores of the Raigorodok deposit. Industry of Kazakhstan. 2017:101(2):40—42. (In Russ.).

24. Myrzaliev B., Nogaeva K., Molmakova M. Determination of Jamgyr Deposit Ore Gravity Concentration Feasibility. Proc. Irkutsk State Tech. Univ. 2018;22(10): 153-165. DOI: 10.21285/1814-3520-2018-10-153-165.


Supplementary files

For citation: Surimbayev B.N., Kanaly E.S., Bolotova L.S., Shalgymbayev S.T. Assessment of Gravity Dressability of Gold Ore - GRG Test. Gornye nauki i tekhnologii = Mining Science and Technology (Russia). 2020;5(2):92-103. https://doi.org/10.17073/2500-0632-2020-2-92-103

Views: 1110

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0632 (Online)