Experimental study of transient thermal conditions in longwall faces
https://doi.org/10.17073/2500-0632-2022-1-37-48
Abstract
Keywords
About the Authors
M. P. PerestoroninRussian Federation
Maxim O. Perestoronin – Mining Engineer, Mining Thermal Physics Sector, Department of Aerology and Thermophysics
Perm
A. V. Zaitsev
Russian Federation
Artem V. Zaitsev – Dr. Sci. (Eng.), the Head of the Mining Thermal Physics Sector, Department of Aerology and Thermophysics
Scopus ID 57213120380
Perm
M. A. Semin
Russian Federation
Mikhail A. Semin – Cand. Sci. (Eng.), Researcher, Mining Thermal Physics Sector, Department of Aerology and Thermophysics
Scopus ID 56462570900, ResearcherID S-8980-2016
Perm
D. A. Borodavkin
Russian Federation
Dmitry A. Borodavkin – Mining Engineer, Sector “Mining Thermal Physics”, Department of Aerology and Thermophysics
Perm
References
1. Gendler S. G. Thermal conditions of underground structures. Leningrad: G.V. Plekhanov LGI; 1987, 102 p. (In Russ.)
2. Zaytsev A.V. Scientific bases of thermal management and calculations in underground mines. Doctoral thesis in engineering science. Perm; 2019. 247 p. (In Russ.)
3. Chebotarev A. G., Afanasieva R. F. Assessment of physiological and sanitary aspects of microclimate at workplaces in underground and opencast mines, and preventive measures against its adverse effect. Russian Mining Industry. 2012;(6):34–40. (In Russ.). URL: https://mining-media.ru/ru/article/prombez/3190-fiziologogigienicheskaya-otsenka-mikroklimata-na-rabochikh-mestakh-v-shakhtakh-i-karerakh-i-mery-profilaktikiego-neblagopriyatnogo-vozdejstviya.%20%D0%94%D0%B0%D1%82%D0%B0%20%D0%BE%D0%B1%D1%80%D0%B0%D1%89%D0%B5%D0%BD%D0%B8%D1%8F%2003.10.2018
4. Lapshin A.A. Influence of extraction chambers backfilling on microclimat of deep mines. Eastern-European Journal of Enterprise Technologies. 2014;(10):3–11. (In Russ.). URL: http://journals.uran.ua/eejet/article/view/22151/21021
5. Galushko V. N., Alferova T.V., Alferov A.A. Determination of reliability indicators of electrical systems taking into account changing operating conditions. Vestnik Gomel’skogo Gosudarstvennogo Tekhnicheskogo Universiteta im. P. O. Sukhogo. 2013;(3):80–87. (In Russ.)
6. Vengerov I. R. Vol. I. Paradigm analysis. In: Thermophysics of Underground Mines and Open Pits. Mathematical Models. Donetsk: Nord-Press Publ.; 2008. 632 p. (In Russ.). URL: https://www.geokniga.org/bookfiles/geokniga-teplofizika-shaht-i-rudnikov-matematicheskie-modeli-tom-1-analiz-paradigmy.pdf
7. Khokholov Yu.A., Kurilko A. S. Mathematical modelling of processes of heat mass exchange of ventilation air and rocks in the cryolithozone extensive mine workings. Nauka i Obrazovanie. 2015;(3):50–54. (In Russ.). URL: http://no.ysn.ru/attachments/article/1521/050-054_%D0%A5%D0%BE%D1%85%D0%BE%D0%BB%D0%BE%D0%B2.pdf
8. Lapshin A.A. Mathematical modeling of heat exchange processes at the movement of air in mine workings of ore mines. Nachnyi Vestnik MSMU. 2013;(12):93–101. (In Russ.). URL: https://readera.org/read/140215704
9. Levin L. Y., Semin M.A., Zaitsev A.V. Mathematical methods of forecasting microclimate conditions in an arbitrary layout network of underground excavations. Journal of Mining Science. 2014;50(2):371–378. https://doi.org/10.1134/S1062739114020203 (Orig. ver.: Levin L. Y., Semin M.A., Zaitsev A.V. Mathematical methods of forecasting microclimate conditions in an arbitrary layout network of underground excavations. Fiziko-Texhnicheskiye Problemy Razrabbotki Poleznykh Iskopaemykh. 2014;(2):154–161. (In Russ.))
10. McPherson M. J. The analysis and simulation of heat flow into underground airways. International Journal of Mining and Geological Engineering. 1986;4(3):165–195. https://doi.org/10.1007/BF01560715
11. Lapshin A.A. Mathematical simulation of microclimate normalisation processes in deep ore mines. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2014;(3):137–144. (In Russ.). URL: http://nvngu.in.ua/index.php/ru/component/jdownloads/finish/41-03/643-2014-3-lapshin/0
12. Minchev D. S., Gogorenko O.A. Effect of thermal on diesel engines transient performance. Internal Combustion Engines. 2020;(1):68–72. https://doi.org/10.20998/0419-8719.2020.1.09
13. Shuvalov Yu.V. Thermal conditions control for underground mines and open pits in the North: Resource-saving systems. Leningrad: Publishing House of Leningrad University; 1988. 196 p. (In Russ.)
14. Lugovsky S. I. Ventilation of deep mines. Gosgortekhizdat Publ.; 1962. 324 p. (In Russ.)
15. Rutherford J. G. Ventilation heat Exchanger at Inco’s Greighton Mine. Canadian Mining Journal. 1958;79(10):97–100.
16. Barenbrug A. W. Deep level mining. Observations on the Kolar Field. The South African Mining and Engineering Journal. 1948:2886.
17. Caw J. M. The Colar Gold Field. Mine and Quarry Engineering. 1956;22(7):238–296.
18. McPherson M. J. The simulation of airflow and temperature in the stopes of S. African gold mines. In: Proc. International Mine Ventilation Congress. Johannesburg; 1975. Pp. 35–51.
19. Ozhegin M.A. Study of electric driven mining machines heat release in deep underground mining conditions and its effect on the thermal conditions at the 4th Mine Administration of JSC “Belaruskali”. In: Problems of Hydrocarbon and Ore Mineral Deposits Development. Proceedings of the XI All-Russian Research-to-Practice Conference. Perm, November 7–9. 2018. Perm: Perm National Research Polytechnic University Publ.; 2018. Pp. 358–360 (In Russ.).URL: https://neftteh.ru/files/2018_1.pdf
20. Podvigin K.А. Analysis of heat release sources at deep levels of coal mines. Innovative prospects of Donbass. In: Proceedings of the 6th International Research-to-Practice Conference. Donetsk: May 26–28. 2020. Donetsk: Donetsk National Technical University Publ.; 2020. Pp. 60–75. (In Russ.). URL: http://ipd.donntu.org/dl/IPD2020/s1.pdf
Review
For citations:
Perestoronin M.P., Zaitsev A.V., Semin M.A., Borodavkin D.A. Experimental study of transient thermal conditions in longwall faces. Mining Science and Technology (Russia). 2022;7(1):37-48. https://doi.org/10.17073/2500-0632-2022-1-37-48