Preview

Горные науки и технологии

Расширенный поиск

Прогнозирование выбросов пыли (PM2.5) на угольных разрезах с помощью нейронной сети с функциональными связями, оптимизированной различными алгоритмами

https://doi.org/10.17073/2500-0632-2022-2-111-125

Аннотация

Загрязнение воздуха PM2.5 (твердые частицы размером 2,5 мк и менее) представляет собой не только значительную опасность для здоровья человека в повседневной жизни, но и опасный риск для рабочих при открытых горных работах, особенно на угольных разрезах. PM2.5 на угольных разрезах могут вызывать заболевания легких (например, пневмокониоз, рак легких) и сердечно-сосудистые заболевания из-за длительного воздействия вдыхаемой пыли. Поэтому точное прогнозирование PM2.5 имеет большое значение для минимизации загрязнения PM2.5 и улучшения качества воздуха на рабочих местах. В данном исследовании изучались метеорологические условия и выбросы PM2.5 на угольном разрезе во Вьетнаме с целью разработки новой интеллектуальной модели для прогнозирования выбросов и загрязнения PM2.5, применялась нейронная сеть с функциональными связями (FLNN) для прогнозирования загрязнения PM2.5 в зависимости от метеорологических условий (в частности, температуры, влажности, атмосферного давления, направления и скорости ветра). Вместо традиционных алгоритмов для обучения модели FLNN был использован алгоритм поиска методом голодных игр (HGS). Важнейшая роль HGS в данном исследовании заключается в оптимизации весов в модели FLNN, которая была названа моделью HGS-FLNN. Также были рассмотрены три другие гибридные модели, основанные на FLNN и метаэвристических алгоритмах, т.е. ABC (искусственная пчелиная колония)-FLNN, GA (генетический алгоритм)-FLNN и PSO (оптимизация роя частиц)-FLNN, для оценки возможности прогнозирования PM2.5 на угольных разрезах и сравнения их результатов с результатами модели HGS-FLNN. Исследования показали, что HGS-FLNN является лучшей моделью с самой высокой точностью прогнозирования загрязнения воздуха PM2.5 (в среднем до 94–95 %, при этом точность других моделей варьировалась от 87 до 90 %), а также наиболее стабильной моделью с наименьшей относительной ошибкой (в диапазоне от −0,3 до 0,5 %).

Об авторах

С. -Н. Буи
Ханойский университет горного дела и геологии
Вьетнам

Суан-Нам Буи– доктор наук, профессор, департамент открытых горных работ; Исследовательская группа инноваций для устойчивой и ответственной добычи полезных ископаемых (ISRM)

Scopus ID 36892679300

Ханой



Х. Нгуен
Ханойский университет горного дела и геологии
Вьетнам

Хоанг Нгуен – департамент открытых горных работ; Исследовательская группа инноваций для устойчивой и ответственной добычи полезных ископаемых (ISRM)

Scopus ID 57209589544

Ханой



К. -Т. Ле
Ханойский университет горного дела и геологии
Вьетнам

Ки-Тао Ле – департамент открытых горных работ; Исследовательская группа инноваций для устойчивой и ответственной добычи полезных ископаемых (ISRM)

Scopus ID 57209279515

Ханой



Т. Н. Ле
Vinacomin – Minerals Holding Corporation
Вьетнам

Туан-Нгок Ле – заместитель генерального директора

Ханой



Список литературы

1. Aneja V. P., Isherwood A., Morgan P. Characterization of particulate matter (PM10) related to surface coal mining operations in Appalachia. Atmospheric Environment. 2012;54:496–501. https://doi.org/10.1016/j.atmosenv.2012.02.063

2. Chakraborty M., Ahmad M., Singh R. et al. Determination of the emission rate from various opencast mining operations. Environmental Modelling & Software. 2002;17(5):467–480. https://doi.org/10.1016/S1364-8152(02)00010-5

3. Nie B.-S., Li X.-C., Yang T. et al. Distribution of PM2.5 dust during mining operation in coal workface. Journal of China Coal Society.2013;38(1):33–37. (In Chinese) URL: https://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000001/art00006#

4. Kurth L. M., McCawley M., Hendryx M., Lusk S. Atmospheric particulate matter size distribution and concentration in West Virginia coal mining and non-mining areas. Journal of Exposure Science & Environmental Epidemiology. 2014;24:405–411. https://doi.org/10.1038/jes.2014.2

5. Li Z., Ma Z., van der Kuijp T. J. et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment. 2014;468–469:843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090

6. Dos Santos Pedroso-Fidelis G., Farias H. R., Mastella G. A. et al. Pulmonary oxidative stress in wild bats exposed to coal dust: A model to evaluate the impact of coal mining on health. Ecotoxicology and Environmental Safety. 2020;191:110211. https://doi.org/10.1016/j.ecoenv.2020.110211

7. Hendryx M., Islam M. S., Dong G.-H., Paul G. Air pollution emissions 2008–2018 from australian coal mining: implications for public and occupational health. International Journal of Environmental Research and Public Health. 2020;17(5):1570. https://doi.org/10.3390/ijerph17051570

8. Luo H., Zhou W., Jiskani I. M., Wang Z. Analyzing characteristics of particulate matter pollution in openpit coal mines: Implications for Green Mining. Energies. 2021;14(9):2680. https://doi.org/10.3390/en14092680

9. Moreno T., Trechera P., Querol X. et al. Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. International Journal of Coal Geology. 2019;203:52–59. https://doi.org/10.1016/j.coal.2019.01.006

10. Song Y., Wang X., Maher B. A. et al. The spatial-temporal characteristics and health impacts of ambient fine particulate matter in China. Journal of Cleaner Production. 2016;112:1312–1318. https://doi.org/10.1016/j.jclepro.2015.05.006

11. Alvarado M., Gonzalez F., Fletcher A., Doshi A. Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites. Sensors. 2015;15(8):19667–19687. https://doi.org/10.3390/s150819667

12. Nambiar M. K., Robe F. R., Seguin A. M. et al. Diurnal and seasonal variation of area-fugitive methane advective flux from an open-pit mining facility in Northern Canada using WRF. Atmosphere. 2020;11(11):1227. https://doi.org/10.3390/atmos11111227

13. Trechera P., Moreno T., Córdoba P. et al. Comprehensive evaluation of potential coal mine dust emissions in an open-pit coal mine in Northwest China. International Journal of Coal Geology. 2021;235:103677. https://doi.org/10.1016/j.coal.2021.103677

14. Chaulya S. Assessment and management of air quality for an opencast coal mining area. Journal of Environmental Management. 2004;70(1):1–14. https://doi.org/10.1016/j.jenvman.2003.09.018

15. Patra A. K., Gautam S., Kumar P. Emissions and human health impact of particulate matter from surface mining operation – A review. Environmental Technology & Innovation. 2016;5:233–249. https://doi.org/10.1016/j.eti.2016.04.002

16. Alam G., Ihsanullah I., Naushad M., Sillanpää M. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: recent advances and prospects. Chemical Engineering Journal. 2022;427:130011. https://doi.org/10.1016/j.cej.2021.130011

17. Li B.-H., Hou B.-C., Yu W.-T., Lu X.-B., Yang C.-W. Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers of Information Technology & Electronic Engineering. 2017;18:86-96. https://doi.org/10.1631/FITEE.1601885

18. Nguyen H., Bui N. X., Tran H. Q., Le G. H. T. A novel soft computing model for predicting blast – induced ground vibration in open – pit mines using gene expression programming. Journal of Mining and Earth Sciences. 2020;61:107–116. (In Vietnamese) https://doi.org/10.46326/jmes.ktlt2020.09

19. Nguyen L. Q. A novel approach of determining the parameters of Asadi profiling function for predictiong ground subsidence due to inclied coal seam mining at Quang Ninh coal basin. Journal of Mining and Earth Sciences. 2020;61:86–95. (In Vietnamese) https://doi.org/10.46326/jmes.2020.61(2).10

20. Tayarani-N M.-H. Applications of artificial intelligence in battling against COVID-19: a literature review. Chaos, Solitons & Fractals. 2020;142:110338. https://doi.org/10.1016/j.chaos.2020.110338

21. Lal B., Tripathy S. S. Prediction of dust concentration in open cast coal mine using artificial neural network. Atmospheric Pollution Research. 2012;3(2):211–218. https://doi.org/10.5094/APR.2012.023

22. Bakhtavar E., Hosseini S., Hewage K., Sadiq R. Green blasting policy: simultaneous forecast of vertical and horizontal distribution of dust emissions using artificial causality-weighted neural network. Journal of Cleaner Production. 2021;283:124562. https://doi.org/10.1016/j.jclepro.2020.124562

23. Bui X.-N., Lee C. W., Nguyen H. et al. Estimating PM10 concentration from drilling operations in open-pit mines using an assembly of SVR and PSO. Applied Sciences. 2019;9(14):2806. https://doi.org/10.3390/app9142806

24. Li L., Zhang R., Sun J. et al. Monitoring and prediction of dust concentration in an open-pit mine using a deep-learning algorithm. Journal of Environmental Health Science and Engineering. 2021;19:401–414. https://doi.org/10.1007/s40201-021-00613-0

25. Lu X., Zhou W., Qi C. et al. Prediction into the future: A novel intelligent approach for PM2.5 forecasting in the ambient air of open-pit mining. Atmospheric Pollution Research. 2021;12(6):101084. https://doi.org/10.1016/j.apr.2021.101084

26. Gautam S., Prasad N., Patra A. K. et al. Characterization of PM2.5 generated from opencast coal mining operations: A case study of Sonepur Bazari Opencast Project of India. Environmental Technology & Innovation. 2016;6:1–10. https://doi.org/10.1016/j.eti.2016.05.003

27. Huang Y., Bao M., Xiao J. et al. Effects of PM2.5 on cardio-pulmonary function injury in open manganese mine workers. International Journal of Environmental Research and Public Health. 2019;16(11):2017. https://doi.org/10.3390/ijerph16112017

28. Wanjun T., Qingxiang C. Dust distribution in open-pit mines based on monitoring data and fluent simulation. Environmental Monitoring and Assessment. 2018;190:632. https://doi.org/10.1007/s10661-018-7004-9

29. Oguntoke O., Ojelede M.E., Annegarn H.J. Frequency of mine dust episodes and the influence of meteorological parameters on the Witwatersrand area, South Africa. International Journal of Atmospheric Sciences. 2013;2013:128463. https://doi.org/10.1155/2013/128463

30. Silvester S., Lowndes I., Hargreaves D. A computational study of particulate emissions from an open pit quarry under neutral atmospheric conditions. Atmospheric Environment. 2009;43(40):6415–6424. https://doi.org/10.1016/j.atmosenv.2009.07.006

31. Pao Y. Adaptive pattern recognition and neural networks. CWRU: Case Western Reserve University; 1989. https://doi.org/10.5860/choice.26-6311

32. Patra J. C., Pal R. N. A functional link artificial neural network for adaptive channel equalization. Signal Processing. 1995;43(2):181–195. https://doi.org/10.1016/0165-1684(94)00152-P

33. Nguyen T., Tran N., Nguyen B. M., Nguyen G. A resource usage prediction system using functional-link and genetic algorithm neural network for multivariate cloud metrics. In: 2018 IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA). 2018. Pp. 49–56. https://doi.org/10.1109/SOCA.2018.00014

34. Majhi B., Naidu D. Pan evaporation modeling in different agroclimatic zones using functional link artificial neural network. Information Processing in Agriculture. 2021;8(1):134–147. https://doi.org/10.1016/j.inpa.2020.02.007

35. Nguyen T., Nguyen B. M., Nguyen G. Building Resource Auto-scaler with Functional-Link Neural Network and Adaptive Bacterial Foraging Optimization. In: Gopal TV, Watada J (eds.) Theory and Applications of Models of Computation. TAMC 2019. Lecture Notes in Computer Science. Springer, Cham. 2019. Pp. 501–517. https://doi.org/10.1007/978-3-030-14812-6_31

36. Kaveh A. Advances in metaheuristic algorithms for optimal design of structures. Springer, Cham; 2014. https://doi.org/10.1007/978-3-319-05549-7

37. Ting T., Yang X.-S., Cheng S., Huang K. Hybrid metaheuristic algorithms: past, present, and future. In: Yang X. S. (ed.) Recent Advances in Swarm Intelligence and Evolutionary Computation. Studies in Computational Intelligence. Springer, Cham; 2015. Pp. 71–83. https://doi.org/10.1007/978-3-319-13826-8_4

38. Yang Y., Chen H., Heidari A. A., Gandomi A. H. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications. 2021;177:114864. https://doi.org/10.1016/j.eswa.2021.114864

39. Nguyen H., Bui X.-N. A novel hunger games search optimization-based artificial neural network for predicting ground vibration intensity induced by mine blasting. Natural Resources Research. 2021;30:3865–3880. https://doi/org/10.1007/s11053-021-09903-8

40. Chen W., Sarir P., Bui X.-N. et al. Neuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pile. Engineering with Computers. 2020;36:1101–1115. https://doi.org/10.1007/s00366-019-00752-x

41. Erkoc M. E., Karaboga N. A novel sparse reconstruction method based on multi-objective Artificial Bee Colony algorithm. Signal Processing. 2021;189:108283. https://doi.org/10.1016/j.sigpro.2021.108283

42. Fang Q., Nguyen H., Bui X.-N., Tran Q.-H. Estimation of blast-induced air overpressure in quarry mines using cubist-based genetic algorithm. Natural Resources Research. 2020;29:593–607. https://doi.org/10.1007/s11053-019-09575-5

43. Liu L., Moayedi H., Rashid A. S. A. et al. Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of eco-friendly raft-pile foundation (ERP) system. Engineering with Computers. 2020;36:421–433. https://doi.org/10.1007/s00366-019-00767-4

44. Nguyen H., Bui H.-B., Bui X.-N. Rapid determination of gross calorific value of coal using artificial neural network and particle swarm optimization. Natural Resources Research. 2021;30:621–638. https://doi.org/10.1007/s11053-020-09727-y

45. Peng B., Wu L., Wang Y., Wu Q. Solving maximum quasi-clique problem by a hybrid artificial bee colony approach. Information Sciences. 2021;578:214–235. https://doi.org/10.1016/j.ins.2021.06.094

46. Xu Y., Wang X. An artificial bee colony algorithm for scheduling call centres with weekend-off fairness. Applied Soft Computing. 2021;109:107542. https://doi.org/10.1016/j.asoc.2021.107542

47. Zhang X., Nguyen H., Bui X.-N. et al. Evaluating and predicting the stability of roadways in tunnelling and underground space using artificial neural network-based particle swarm optimization. Tunnelling and Underground Space Technology. 2020;103:103517. https://doi.org/10.1016/j.tust.2020.103517

48. Zhang X., Nguyen H., Bui X.-N. et al. Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost. Natural Resources Research. 2020;29:711–721. https://doi.org/10.1007/s11053-019-09492-7

49. Akay B., Karaboga D., Gorkemli B., Kaya E. A survey on the artificial bee colony algorithm variants for binary, integer and mixed integer programming problems. Applied Soft Computing. 2021;106:107351. https://doi.org/10.1016/j.asoc.2021.107351

50. Aygun H., Turan O. Application of genetic algorithm in exergy and sustainability: A case of aero-gas turbine engine at cruise phase. Energy. 2022;238:121644. https://doi.org/10.1016/j.energy.2021.121644

51. Bai B., Zhang J., Wu X. et al. Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural network in engineering systems. Expert Systems with Applications. 2021;177:114952. https://doi.org/10.1016/j.eswa.2021.114952

52. Kennedy J., Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95 – International Conference on Neural Networks. 1995. Pp. 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

53. Kiran M. S., Hakli H., Gunduz M., Uguz H. Artificial bee colony algorithm with variable search strategy for continuous optimization. Information Sciences. 2015;300:140–157. https://doi.org/10.1016/j.ins.2014.12.043

54. Liang B., Zhao Y., Li Y. A hybrid particle swarm optimization with crisscross learning strategy. Engineering Applications of Artificial Intelligence. 2021;105:104418. https://doi.org/10.1016/j.engappai.2021.104418

55. Mirjalili S. Genetic algorithm. In: Evolutionary Algorithms and Neural Networks. Studies in Computational Intelligence. Springer, Cham; 2019. Pp. 43–55. https://doi.org/10.1007/978-3-319-93025-1_4

56. Pourzangbar A., Vaezi M. Optimal design of brace-viscous damper and pendulum tuned mass damper using Particle Swarm Optimization. Applied Ocean Research. 2021;112:102706. https://doi.org/10.1016/j.apor.2021.102706

57. Roy A., Dubey C. P., Prasad M. Gravity inversion of basement relief using Particle Swarm Optimization by automated parameter selection of Fourier coefficients. Computers & Geosciences. 2021;156:104875. https://doi.org/10.1016/j.cageo.2021.104875

58. Tapia A. R., del Nozal A., Reina D. G., Millán P. Three-dimensional optimization of penstock layouts for micro-hydropower plants using genetic algorithms. Applied Energy. 2021;301:117499. https://doi.org/10.1016/j.apenergy.2021.117499

59. Wang C., Guo C., Zuo X. Solving multi-depot electric vehicle scheduling problem by column generation and genetic algorithm. Applied Soft Computing. 2021;112:107774. https://doi.org/10.1016/j.asoc.2021.107774

60. Wang S.-C. Genetic algorithm. In: Interdisciplinary Computing in Java Programming. The Springer International Series in Engineering and Computer Science. Springer, Boston; 2003. Pp. 101–116. https://doi.org/10.1007/978-1-4615-0377-4_6

61. Xiang W.-L., Li Y.-Z., He R.-C., An M.-Q. Artificial bee colony algorithm with a pure crossover operation for binary optimization. Computers & Industrial Engineering. 2021;152:107011. https://doi.org/10.1016/j.cie.2020.107011


Рецензия

Для цитирования:


Буи С.-., Нгуен Х., Ле К.-., Ле Т.Н. Прогнозирование выбросов пыли (PM2.5) на угольных разрезах с помощью нейронной сети с функциональными связями, оптимизированной различными алгоритмами. Горные науки и технологии. 2022;7(2):111-125. https://doi.org/10.17073/2500-0632-2022-2-111-125

For citation:


Bui X.-., Nguyen H., Le Q..., Le T.N. Forecasting PM2.5 emissions in open-pit minesusing a functional link neural network optimized by various optimization algorithms. Mining Science and Technology (Russia). 2022;7(2):111-125. https://doi.org/10.17073/2500-0632-2022-2-111-125

Просмотров: 3037


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0632 (Online)