Measurement of feeder performance during coal discharge from an underroof seam using machine vision
https://doi.org/10.17073/2500-0632-2022-09-22
Abstract
Keywords
About the Authors
M. S. NikitenkoRussian Federation
Mikhail S. Nikitenko – Cand. Sci. (Eng.), Head of Laboratory
Scopus ID 55748886500
ResearcherID E-3893-2014
Kemerovo
S. A. Kizilov
Russian Federation
Sergey A. Kizilov – Researcher
Scopus ID 57203142801
Kemerovo
Yu. N. Zakharov
Russian Federation
Yuri N. Zakharov – Dr. Sci. (Phys. and Math.), Professor
Scopus ID 56825350700
Kemerovo
D. Yu. Khudonogov
Russian Federation
Danila Yu. Khudonogov – Researcher
Kemerovo
A. Yu. Ignatova
Russian Federation
Alla Yu. Ignatova – Cand. Sci. (Biol.), Associate Professor of the Department of Chemical Technology of Solid Fuels and Ecology
Scopus ID 6701747560
Kemerovo
References
1. Klishin V. I., Afyorov B. A., Kuznetsova L. V. Areas of improving development of thick seams with drawing of the coal from under the roof strata. In: Innovations in Fuel and Energy Complex and Mechanical Engineering (FEC-2017). Proceedings of the International Scientific and Practical Conference. Kemerovo: T. F. Gorbachev State Technical University; 2017. Pp. 57–63. (In Russ.)
2. Klishin V. I., Klishin S. V. Current state and direction of development of thick coal seams exavation technology by powered roof supports with controlled coal discharge. Izvestija Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2019;(1):162–174. (In Russ.)
3. Peng S. S. Longwall mining. 3rd edition. Leiden: CRC Press/Balkema; 2020. 562 p.
4. Le T. D., Mitra R., Oh J., Hebblewhite B. A review of cavability evaluation in longwall top coal caving. International Journal of Mining Science and Technology. 2017;27(6):907–915. https://doi.org/10.1016/j.ijmst.2017.06.021
5. Mundry S., Sandgathe C. Automated Cat longwall top coal caving. In: Efficient Mining of High Seams with Automated LTCC Operations. Caterpillar Inc.; 2018. Pp. 12-14. URL: http://s7d2.scene7.com/is/content/Caterpillar/CM20180716-40601-27335 (Accessed: 01.08.2022).
6. Medhurst T., Rankine R., Kelly M. Development of a method for a longwall top coal caveability assessment. In: Coal operators’ conference. 12–14 February 2014. Wollongong: University of Wollongong; 2014. Pp. 42–50. URL: https://ro.uow.edu.au/cgi/viewcontent.cgi?article=2159&context=coal
7. Le T. D. Longwall Top Coal Caving mechanism and cavability assessment. [PhD thesis in Mining Engineering]. Sydney; 2018. https://doi.org/10.26190/unsworks/20236
8. Klishin V. I., Shundulidi I. A., Ermakov A. Yu., Soloviev A. S. Technique for development of reserves of thick shallow seams with coal discharge. Novosibirsk: Nauka Publ.; 2013. 248 p. (In Russ.)
9. Klishin V. I., Opruk G. Yu., Varfolomeev E. L., Borisov I. L. Interaction of mechanized support with interlayer thickness in systems with subvel caving. Mining Informational and Analytical Bulletin. 2018;(S48):87–94. (In Russ.) https://doi.org/10.25018/0236-1493-2018-11-48-87-94
10. Kizilov S. A., Nikitenko M. S., Neodzhy B. et al. Automation of process control in thick seam mining with top coal caving. Russian Mining Industry. 2017;(6):96–99. (In Russ.) URL: https://mining-media.ru/en/articles/articleen/13196-automation-of-process-control-in-thick-seam-mining-with-top-coal-caving
11. Nikitenko M. S., Kizilov S. A., Nikolaev P. I., Kuznetsov I. S. Technical devices of powered roof support for the top coal caving as automation objects. In: IOP Conference Series: Materials Science and Engineering. XI All-Russian Scientific and Practical Conference (with international participation) “Automation systems in education, science and production, 2017”. 14–16 December 2017, Novokuznetsk, Russian Federation. 2017;354:012014. https://doi.org/10.1088/1757-899X/354/1/012014
12. Nikitenko M. S., Kizilov S. A. Technical and technological platforms for creating robotized complexes for the development of thick seam deposits. In: IOP Conference Series: Earth and Environmental Science, Volume 377, International Scientific and Research Conference on Knowledge-based technologies in development and utilization of mineral resources. 4–7 June 2019, SibSIU, Novokuznetsk, Russia. 2019;377:012033. https:// doi.org/10.1088/1755-1315/377/1/012033
13. Starodubov A. N., Sinoviev V. V., Klishin V. I., Kramarenko V. A. Application of simulating modeling for research of subvel caving modes. In: 9th All-Russian Scientific and Practical Conference on Simulation Modeling and its Application in Science and Industry. Yekaterinburg; 2019. Pp. 540–547. (In Russ.) URL: http://simulation.su/uploads/files/default/2019-immod-540-547.pdf
14. Starodubov A., Sinoviev V., Totskiy A., Klishin V. Review of mining equipment with controlled robotized subvel caving with specialized software. In: E3S Web of Conferences. Vth International Innovative Mining Symposium. 2020;174:03012. https://doi.org/10.1051/e3sconf/202017403012
15. Starodubov A. N., Sinoviev V. V., Klishin V. I. The development of simulating system of robotized technologies for thick and acute coal seams. Journal of Physics: Conference Series. 2021;1749(1):012040. https://doi.org/10.1088/1742-6596/1749/1/012040
16. Heyduk A. Bulk density estimation using a 3-dimensional image acquisition and analysis system. In: E3S Web of Conferences. Mineral Engineering Conference MEC2016. 2016;8:01060. https://doi.org/10.1051/e3sconf/20160801060
17. Heyduk A. Laser triangulation in 3-dimensional granulometric analysis. Archives of Mining Sciences. 2016;61(1):15–27. https://doi.org/10.1515/amsc-2016-0002
18. Min F., Lou A., Wei Q. Design and experiment of dynamic measurement method for bulk material of large volume belt conveyor based on laser triangulation method. In: IOP Conference Series Materials Science and Engineering. 7th Annual International Conference on Material Science and Environmental Engineering. 15–16 November 2019. Wuhan, Hubei, China. 2020;735(1):012029. https://doi.org/10.1088/1757-899X/735/1/012029
19. Fojtík D. Measurement of the volume of material on the Conveyor Belt measuring of the volume of wood chips during transport on the Conveyor Belt using a laser scanning. In: Proceedings of the 2014 15th International Carpathian Control Conference (ICCC). 28–30 May 2014. Velke Karlovice, Czech Republic. Pp. 121–124. https://doi.org/10.1109/CarpathianCC.2014.6843581
20. Amorim L. L., Mutz F., De Souza A. F. et al. Simple and effective load volume estimation in moving trucks using lidars. In: 32nd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). 28–30 October 2019. Rio de Janeiro, Brazil. Pp. 210–217. https://doi.org/10.1109/SIBGRAPI.2019.00036
21. Zeng F., Wu Q., Chu X., Yue Z. Measurement of bulk material flow based on laser scanning technology for the energy efficiency improvement of belt conveyors. Measurement. 2015;75:230–243. https://doi.org/10.1016/j.measurement.2015.05.041
22. Dunn M., Reid P., Malos J. Development of a protective enclosure for remote sensing applications—case study: laser scanning in underground coal mines. Resources. 2020;9(5):56. https://doi.org/10.3390/resources9050056
23. Macpherson T., Churchland A., Sejnowski T. et al. Natural and artificial intelligence: a brief introduction to the interplay between AI and neuroscience research. Neural Networks. 2021;144:603–613. https://doi.org/10.1016/j.neunet.2021.09.018
24. Akulov M. S., Gladkikh S. A., Lankina M. Yu., Baklanov A. N. Processing photos and videos by using neural networks in the LABVIEW program. Sovremennyye Naukoyemkiye Tekhnologii. 2019;(3–1):12–17. (In Russ.) URL: https://top-technologies.ru/ru/article/view?id=37434
Review
For citations:
Nikitenko M.S., Kizilov S.A., Zakharov Yu.N., Khudonogov D.Yu., Ignatova A.Yu. Measurement of feeder performance during coal discharge from an underroof seam using machine vision. Mining Science and Technology (Russia). 2022;7(4):264–273. https://doi.org/10.17073/2500-0632-2022-09-22