Амплитудно-частотный отклик распределенного акустического сенсора DAS со спиральной намоткой волокна
https://doi.org/10.17073/2500-0632-2022-06-10
Аннотация
При проведении настоящего исследования была поставлена цель проанализировать возможности распределенных датчиков DAS при решении горнотехнических задач, сравнить с существующими сейсмоакустическими системами сбора данных и подготовить основу для проведения сейсмоакустических исследований с регистрацией оптоволоконной распределенной системой. Рассмотрены возможности регистрации сейсмоакустических сигналов с помощью оптоволоконных распределенных акустических систем. На основании физико-геометрического анализа получены амплитудно-частотные характеристики регистрируемых продольных волн для прямого и спирального волокна. Для спирального волокна амплитудно-частотные характеристики зависят от нескольких ключевых факторов: интегрирования измеряемого значения вдоль волокна на базе измерения, угла падения волны на кабель и угла намотки волокна в кабеле. Увеличение угла намотки повышает равномерность амплитудно-частотной характеристики продольных волн как по частотам, так и по углам падения. В то же время спиральная намотка меняет эффективную базу измерения сигнала, что позволяет путем суммирования сигналов прямого и спирального волокна за счет перекрытия спектров выполнять регистрацию частот, подавляемых при раздельной записи. По результатам исследования предложена конструкция кабеля для регистрации широкополосных сейсмоакустических сигналов, с помощью которых можно решать обширный круг горнотехнических и инженерных задач, выполняя сейсморазведочные исследования как в скважинах, так и на поверхности.
Ключевые слова
Об авторах
А. В. ЧугаевРоссия
Александр Валентинович Чугаев – кандидат технических наук, заведующий сектором малоглубинных скважинных исследований отдела активной сейсмоакустики.
Пермь; Scopus ID 6602559950
М. В. Тарантин
Россия
Михаил Викторович Тарантин – кандидат технических наук, научный сотрудник отдела активной сейсмоакустики.
Пермь; Scopus ID 36601605800
Список литературы
1. Mateeva A., Mestayer J., Cox B. et al. Advances in distributed acoustic sensing (DAS) for VSP. In: SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists; 2012. https://doi.org/10.1190/segam2012-0739.1
2. Parker T., Shatalin S., Farhadiroushan M. Distributed Acoustic Sensing – a new tool for seismic applications. First Break. 2014;32(2):61–69. https://doi.org/10.3997/1365-2397.2013034
3. Wu X., Willis M. E., Palacios W. et al. Compressionaland shear-wave studies of distributed acoustic sensing acquired vertical seismic profile data. The Leading Edge. 2017;36(12):987–993. https://doi.org/org/10.1190/tle36120987.1
4. Hartog A., Kotov O. I., Liokumovich L. B. The optics of distributed vibration sensing. In: Second EAGE Workshop on Permanent Reservoir Monitoring 2013 – Current and Future Trends. Netherlands: EAGE Publications BV; 2013. https://doi.org/10.3997/2214-4609.20131301
5. Shatalin S.V., Treschikov V.N., Rogers A. J. Interferometric optical time-domain reflectometry for distributed optical-fiber sensing. Applied Optics. 1998;37(24):5600–5604. https://doi.org/10.1364/AO.37.005600
6. Dean T., Papp B., Hartog A. Wavenumber response of data recorded using distributed fibre-optic systems. In: 3rd EAGE Workshop on Borehole Geophysics. Netherlands: EAGE Publications BV; 2015. https://doi.org/10.3997/2214-4609.201412215
7. Dean T., Cuny T., Hartog A. H. The effect of gauge length on axially incident P-waves measured using fibre optic distributed vibration sensing: Gauge length effect on incident P-waves. Geophysical Prospecting. 2017;65(1):184–193. https://doi.org/10.1111/1365-2478.12419
8. Bona A., Dean T., Correa J. et al. Amplitude and phase response of DAS receivers. In: 79th EAGE Conference and Exhibition 2017. Netherlands: EAGE Publications BV; 2017. https://doi.org/10.3997/2214-4609.201701200
9. Stork A. L., Baird A. F., Horne S.A. et al. Application of machine learning to microseismic event detection in distributed acoustic sensing data. Geophysics. 2020;85(5):KS149–KS160. https://doi.org/10.1190/geo2019-0774.1
10. Näsholm S. P., Iranpour K., Wuestefeld A. et al. Array signal processing on distributed acoustic sensing data: Directivity effects in slowness space. Journal of Geophysical Research: Solid Earth. 2022;127(2). https://doi.org/10.1029/2021JB023587
11. Willis M. E., Barfoot D., Ellmauthaler A., Wu X. et al. Quantitative quality of distributed acoustic sensing vertical seismic profile data. The Leading Edge. 2016;35(7):605–609. https://doi.org/10.1190/tle35070605.1
12. Судакова М. С., Белов М. В., Понимаскин А. О. и др. Особенности обработки данных вертикального сейсмического профилирования морских малоглубинных скважин с волоконно-оптическими распределенными системами. Геофизика. 2021;(6):110–118.
13. Riedel M., Cosma C., Enescu N. et al. Underground Vertical Seismic Profiling with conventional and fiber-optic systems for exploration in the Kylylahti polymetallic mine, eastern Finland. Minerals (Basel). 2018;8(11):538. https://doi.org/10.3390/min8110538
14. Bellefleur G., Schetselaar E., Wade D. et al. Vertical seismic profiling using distributed acoustic sensing with scatter-enhanced fibre-optic cable at the Cu–Au New Afton porphyry deposit, British Columbia, Canada. Geophysical Prospecting. 2020;68(1):313–333. https://doi.org/10.1111/1365-2478.12828
15. Yaroslavtsev A. G., Fatkin K. B. Mine seismic surveys for the control of safety pillars in potash mines. In: Engineering and Mining Geophysics 2020. European Association of Geoscientists & Engineers; 2020. https://doi.org/10.3997/2214-4609.202051043
16. Санфиров И. А., Ярославцев А. Г., Чугаев А. В. и др. Контроль формирования ледопородного ограждения шахтного ствола комплексом наземных и скважинных сейсморазведочных методов. Физико-технические проблемы разработки полезных ископаемых. 2020;(3):34-46. https://doi.org/10.15372/FTPRPI20200304
17. Chugaev A.V., Sanfirov I.A., Lisin V.P. et al. The integrated borehole seismic surveys at the verkhnekamskoye potassium salt deposit. In: Lecture Notes in Networks and Systems. Vol. 342. Cham: Springer International Publishing; 2022. Pp. 255–269. https://doi.org/10.1007/978-3-030-89477-1_25
18. Correa J., Egorov A., Tertyshnikov K. et al. Analysis of signal to noise and directivity characteristics of DAS VSP at near and far offsets – A CO2CRC Otway Project data example. The Leading Edge. 2017;36(12):962–1044. https://doi.org/10.1190/tle36120994a1.1
19. Kuvshinov B. N. Interaction of helically wound fibre-optic cables with plane seismic waves. Geophysical Prospecting. 2016;64(3):671–688. https://doi.org/10.1111/1365-2478.12303
20. den Boer J. J., Mateeva A., Pearce J. G. et al. Detecting broadside acoustic signals with a fiber optical distributed acoustic sensing (DAS) assembly. Standard Patent WO2013/090544/A1, 2013. URL: https:// patentimages.storage.googleapis.com/6a/52/dc/6513f050b2f66c/AU2012352253C1.pdf
21. Tertyshnikov K., Bergery G., Freifeld B., Pevzner R. Seasonal effects on DAS using buried helically wound cables. In: EAGE Workshop on Fiber Optic Sensing for Energy Applications in Asia Pacific. European Association of Geoscientists & Engineers; 2020. https://doi.org/10.3997/2214-4609.202070007
22. Stork A. L., Chalari A., Durucan S. et al. Fibre-optic monitoring for high-temperature Carbon Capture, Utilization and Storage (CCUS) projects at geothermal energy sites. First Break. 2020;38(10):61–67. https://doi.org/10.3997/1365-2397.fb2020075
23. Baird A. Modelling the response of helically wound DAS cables to microseismic arrivals. In: First EAGE Workshop on Fibre Optic Sensing. European Association of Geoscientists & Engineers; 2020. https://doi.org/10.3997/2214-4609.202030019
24. Egorov A., Charara M., Alfataierge E., Bakulin A. Realistic modeling of surface seismic and VSP using DAS with straight and shaped fibers of variable gauge length. In: First International Meeting for Applied Geoscience & Energy Expanded Abstracts. Tulsa, OK, USA: Society of Exploration Geophysicists; 2021. Pp. 184–193. https://doi.org/10.1190/segam2021-3576626.1
Рецензия
Для цитирования:
Чугаев А.В., Тарантин М.В. Амплитудно-частотный отклик распределенного акустического сенсора DAS со спиральной намоткой волокна. Горные науки и технологии. 2023;8(1):13-21. https://doi.org/10.17073/2500-0632-2022-06-10
For citation:
Chugaev A.V., Tarantin M.V. Amplitude-frequency response of a helically-wound fiber distributed acoustic sensor (DAS). Mining Science and Technology (Russia). 2023;8(1):13-21. https://doi.org/10.17073/2500-0632-2022-06-10