Gornye nauki i tekhnologii = Mining Science and Technology (Russia)

Advanced search

Russian zirconium industry: current issues in raw material supply

Full Text:


The relevance of the research is connected with Russia’s long-term import dependence on zirconium raw materials.

Goal of this research: to study the dynamics of commodity flows (production, import, export, consumption) of Russian zirconium raw materials; its prices (world and Russian); the raw material base of zirconium in Russia and the prospects for national production of its extraction and processing.

Methods: statistical, graphic, logical.

Results: Russia imports the vast majority (3.5–14.9 kt/year or 98–100 % of consumption) of consumed zircon concentrate. At the same time, almost all of the baddeleyite mined in Russia (4.0–9.3 kt/year or (96–100 % of production) is exported. Since 2018 has there been a decrease in its export supplies and an increase in the national consumption (up to 60 % of production).

Russia has existing deposits, including a useful zirconium component, but all are connected with a certain economic and technological complexity in their development.

In 2022, the national production of selective zircon concentrate began during the development of the Tugan titanium-zirconium deposit. This deposit covers up to 30 % of Russia’s demand for zirconium raw materials up to 2023. Furthermore, the construction of the 2-nd stage of the Tugan mining and processing plant will increase its supply to 15 kt/year. This will completely cover Russian demand for zirconium raw materials. Work is in progress on Zashikhinsky field preparation, where, in the course of enrichment of tantalum-rare-earth ores, up to 8 kt/year of zircon concentrate will be additionally extracted. The emerging trend of reducing Russia’s import dependence on zirconium raw materials, and in the future its complete elimination will allow consumption of zircon and zirconium oxides to be increased in the most demanding area of their use – for dampening the glaze of ceramic tiles. The presence of an independent and sufficient national mining base of zirconium raw materials will allow Russian production of metal zirconium, zirconium refractory and abrasive products, solid fuel energy cells and other zirconiumcontaining applications to be developed.

About the Authors

V. Yu. Khatkov
PJSC “Gazprom” Russia
Russian Federation

Vitaly Yu. Khatkov – Head of Department

Scopus ID 10046552700

St. Petersburg

G. Yu. Boyarko
National Research Tomsk Polytechnic University
Russian Federation

Grigory Yu. Boyarko – Dr. Sci. (Econ.), Cand. Sci. (Geol. and Min.), Professor

Scopus ID 56350674500


L. M. Bolsunovskaya
National Research Tomsk Polytechnic University
Russian Federation

Liudmila M. Bolsunovskaya – Cand. Sci. (Philolog.), Assistant Professor

Scopus ID 56350747600


A. M. Dibrov
Tomsk State University of Control Systems and Radioelectronics
Russian Federation

Artem M. Dibrov – Senior Lecturer


Yu. A. Dibrova
National Research Tomsk Polytechnic University
Russian Federation

Yulia A. Dibrova (Bolsunovskaya) – expert

Scopus ID 56350806400



1. Fedoseev S., Tcvetkov P., Sidorov N. Development potential of Russian zirconium industry on world markets. Journal of business and retail management research, 2017;12(1):41–48. URL:

2. Bykhovsky L. Z., Remizova L. I., Chebotareva O. S. Zirconium resources of Russia: current state and prospects of the mineral resource base development. Mineral resources of Russia. Economics and Management. 2017;(2):11–18. (In Russ.)

3. Kabanov A. A., Akhmadshchin N. Yu. Tuganskoye deposit is the first–born industrial development of titanium-zirconium placers in Russia. Gornyi Zhurnal. 2021;(10):54–64. (In Russ.)

4. Larichkin F. D., Vorobyev A. G., Novoseltseva V. D., et al. Zirconium: resources, markets, prospects. Cvetnye Metally. 2013;(11):17–21. (In Russ.)

5. Shatalov V. V., Nikonov V. I., Kotsar M. L. Prospects for zirconium and hafnium supplies for nuclear power in Russia up to 2030. Atomic Energy. 2008;105(4):242–247. (Orig. ver.: Shatalov V. V., Nikonov V. I., Kotsar M. L. Prospects for zirconium and hafnium supplies for nuclear power in Russia up to 2030. Atomic Energy. 2008;105(4):190–194. (In Russ.))

6. Boyarko G. Yu., Khatkov V. Yu., Bolsunovskaya L. M. The dynamics of ferroalloys commodity flows within Russia. CIS Iron and Steel Review. 2021; 21: 23–33.

7. Vdovin K. N., Pivovarova K. G., Ponamareva T. B., Feoktistov N. A. Improved parting composition of zircon paint for steel casting. Liteyshchik Rossii. 2018;(6):14–17. (In Russ.)

8. Petrov I. M. Consumption of zirconium dioxide to produse high-tech ceramics. Prospect and protection of mineral resources. 2011;(6):90–92. (In Russ.)

9. Perks C., Mudd G. Titanium, zirconium resources and production: A state of the art literature review. Ore Geology Reviews. 2019;107:629–646.

10. Zagainov S. V., Reynbakh O. E. Ceramic industry as the main industry of zircon consumption. Russian Economics Online Journal. 2017;(1):1–9. (In Russ.)

11. Alekseeva T. I., Galevsky G. V., Rudneva V. V., Galevsky S. G. Application of zirconium carbide: Assessment, determination of dominant trends and prospects. In: 20th International Scientific and Research Conference  –  Metallurgy:  Technologies,  Innovation,  Quality,  metallurgy. iop  Conference  Series:  Materials Science and Engineering. 15–16 November, 2017. Novokuznetsk, Russia. 2018;411(119):012007.

12. Portnova E. N. Methods to improve mechanical characteristics of ceramics on the basis of zirconium and hafnium diborides (Review). Bulletin of Perm University. Series: Chemistry. 2020;10(2):180–190. (In Russ.)

13. Ahunova D. R., Popova N. A., Lukin E. S., Pashkov O. D., Kucheryaev K. A. Composite ceramics based on zirconium dioxide for solid fuel elements (review). Advances  in  Chemistry  and  Chemical  Technology. 2022;36(3):13–15. (In Russ.)

14. Kharitonov D. V., Shinkevich A. I., Malysheva T. V. The potential of the Russian raw material base of zirconium for production of ZrO2-based refractory materials. Chernye Metally. 2022;(8):17–21.

15. Patyk-Kara N. G., Bochneva A. A., Chizhova I. A., et al. Mineral assemblages of titanium-zirconium sands at the central deposit, the East European platform. Geology of Ore Deposits. 2008;50(3):218–239. (Orig. ver.: Patyk-Kara N. G., Bochneva A. A., Chizhova I. A., et al. Mineral assemblages of titanium-zirconium sands at the central deposit, the East European platform. Geologiya Rudnykh Mestorozhdeniy. 2008;50(3):246–270. (In Russ.))

16. Quy N. C. T., Kirichenko Yu. V. Mineral potential of subsea deposits in Vietnamese part of South China Sea. Russian Mining Industry. 2020;(1):140–143. (In Russ.)

17. Boyarko G. Yu., Khatkov V. Yu. Critical commodity flows of manganese raw materials in Russia. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2020;331(4):38–53. (In Russ.)

18. Bagdasarov Yu. A., Pototskiy Yu. P., Zinkova O. N. Baddeleyite-containing stratiform bodies in old carbonate sequences. A possible new genetic type of zirconium deposits. Transactions of the USSR Academy of sciences. Earth science sections. 1990;315(6):144–148.

19. Seleznev A. O. Current status of development of the Zashikhinsky deposit: problems and prospects. Moscow: JSC “Tekhnoinvest Alyans”; 2021. 12 p. URL:Селезнев_Презентация_ТЕХНОИНВЕСТ_АЛЬЯНС_ВИМС.pdf (In Russ.)

20. Sheard E. R., Williams-Jones A. E., Heiligmann M., et al. Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Economic Geology. 2012;107(1):81–104.

21. Gysi A. P., Williams-Jones Anthony E., Collins P. Lithogeochemical vectors for hydrothermal processes in the Strange Lake peralkaline granitic REE-Zr-Nb deposit. Economic  Geology. 2016;111(5):1241–1276.

22. Moorea M., Chakhmouradiana A. R., Marianob A. N., Sidhua R. Corrigendum to “Evolution of rareearth mineralization in the Bear Lodge carbonatite, Wyoming: Mineralogical and isotopic evidence”. Ore Geology Reviews. 2015;64:499–521.

23. Riesgo García M. V., Krzemień A., Sáiz Bárcena L. C., et al. Scoping studies of rare earth mining investments: Deciding on further project developments. Resources Policy. 2019;64:101525.

24. Schønwandt H. K., Barnes G. B., Ulrich T. A description of the world-class rare earth element deposit, Tanbreez, South Greenland. Rare Earths Industry: Technological, Economic, and Environmental Implications. 2015:73–85.

25. Chanturiya V. A. Cientific substantiation and development of innovative processes for the extraction of zirconium and rare earth elements in the deep and comprehensive treatment of eudialyte concentrate. Journal of Mining Institute. 2022;256:505–516.

26. Spandler C., Morris C. Geology and genesis of the Toongi rare metal (Zr, Hf, Nb, Ta, Y and REE) deposit, NSW, Australia, and implications for rare metal mineralization in peralkaline igneous rocks. Contributions to Mineralogy and Petrology. 2016;171(121):104.

27. Möller V., Williams-Jones A. E. Magmatic and hydrothermal controls on the mineralogy of the basal zone, Nechalacho REE-Nb-Zr deposit, Canada. Economic geology. 2017;112(8):1823–1856.

28. Riesgo García M. V., Krzemień A., Manzanedo del Campo M. Á., et al. Rare earth elements mining investment: It is not all about China. Resources Policy. 2017;53:66–76.


For citations:

Khatkov V.Yu., Boyarko G.Yu., Bolsunovskaya L.M., Dibrov A.M., Dibrova Yu.A. Russian zirconium industry: current issues in raw material supply. Gornye nauki i tekhnologii = Mining Science and Technology (Russia). 2023;8(2):128–140.

Views: 159

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2500-0632 (Online)