Preview

Mining Science and Technology (Russia)

Advanced search

Parameterization of a ventilation network model for the analysis of mine working emergency ventilation modes

https://doi.org/10.17073/2500-0632-2022-10-13

Abstract

Digital simulation of mine fires and explosions is an important stage in the process of developing technical solutions and measures aimed at improving the safety of personnel involved in underground mining. Correct simulation results determine the effectiveness of decisions in the event of an actual emergency situation. In this regard, due attention should be paid to each stage of the simulation, and especially to the initial stage of model parameterization. This study formulates a general principle for determining the parameters of mine fire and explosion models, in order to assess their development using the AeroNetwork analytical package. Such parameters in the event of a fire are heat and gas (afterdamp) releases. In the event of an explosion, excessive pressure at the shock front in the explosion origin. It has been established that when simulating a fire, it is advisable to use equivalent heat and gas releases determined by the content of combustible components in the combustion origin. In the event of burning mining equipment, these parameters can be calculated on the basis of the technical characteristics of a machine. Furthermore, when simulating an unauthorized explosion of explosives, the excess pressure determined by the dimensionless length of the active combustion area is calculated taking into account the weight and specific heat of an explosive, as well as the geometric parameters of a mine working. When simulating an explosion of a methane-air mixture (firedamp), the excess pressure is calculated taking into account the gas content of rocks in terms of free combustible gases, the length of a blast cut, the size of the area of increased fracturing, and the lower explosive limit of methane. Based on the proposed principle of the parameterization of emergency models, as an example, a model of fire and explosion development in existing extended dead-end workings (more than 1000 m long) passing coaxially to each other at different heights was developed. The numerical simulation of different emergency situations in workings was carried out, taking into account performing mining in difficult mining conditions. 

About the Authors

M. O. Perestoronin
Mining Institute of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Maxim O. Perestoronin – Postgraduate Student, Mining Thermal Physics Sector, Department of Aerology and Thermophysics

Scopus ID 57701516700

Perm



O. S. Parshakov
Mining Institute of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Oleg S. Parshakov – Cand. Sci. (Eng.), Mining Thermal Physics Sector, Department of Aerology and Thermophysics

Scopus ID 57202379375

Perm



M. D. Popov
Mining Institute of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Maxim D. Popov – Postgraduate Student, Mining Thermal Physics Sector, Department of Aerology and Thermophysics

Scopus ID 57208722129

Perm



References

1. Pakhomov V. P., Rudakova L. V. Catastrophes formed by a technical reaction of the character of mining industries. Economy of Regions. 2006;(2):23–36. (In Russ.)

2. Remizov A. V., Hobta A. A. The causes of emergency situations in coal mines and the possibilities of their prevention. Bulletin of the Siberian State Industrial University. 2016;(1):14–16 (In Russ.) URL: https://www.sibsiu.ru/downloads/public/vestniksibgiu/vestnik15.pdf

3. Brake D. J. Fire modelling in underground mines using Ventsim Visual VentFIRE Software. In: Chalmers D. (ed.) The Australian Mine Ventilation Conference. Adelaide, South Australia, 1–3 July 2013. The AusIMM; 2013. Pp. 265–276. URL: https://ventsim.com/wp-content/uploads/2019/04/Fire_Modelling_in_ Underground_Mines_using_Ventsim_VentFIRE.pdf

4. De Rosa M. I. Analysis of mine fires for all US metal/non-metal mining categories, 1990–2001. National Institute for Occupational Safety and Health (NIOSH); 2004. URL: https://www.cdc.gov/NIOSH/Mining/UserFiles/works/pdfs/2005-105.pdf

5. Paleyev D., Lukashov О. Software complex “Mining Aerology (Ventilation)”. Russian Mining Industry. 2007;(6):20–23. (In Russ.) URL: https://mining-media.ru/ru/article/newtech/866-programma-raschetaventilyatsionnykh-rezhimov-v-shakhtakh-i-rudnikakh

6. Lönnermark A., Blomqvist P. Emissions from tyre fires. Borås, Sweden: SP Swedish National Testing and Research Institute; 2005.

7. Liskova M. Yu., Naumov I. S. Design of emergency situations in mines. Nauchnyye Issledovaniya i Innovatsii. 2013;7(1–4):78–81. (In Russ.)

8. Shalimov A. V. Numerical modeling of air flows in mines under emergency state ventilation. Journal of Mining Science. 2011;47(6):807–813. https://doi.org/10.1134/S106273914706013X (Orig. ver.: Shalimov A. V. Numerical modeling of air flows in mines under emergency state ventilation. Fiziko-Texhnicheskiye Problemy  Razrabbotki Poleznykh Iskopaemykh. 2011;(6):84–92. (In Russ.))

9. Hansen R., Ingason H. Full-scale fire experiments with mining vehicles in an underground mine. Research report. Västerås, Sweden: Mälardalen University; 2013.

10. Hansen R. Analysis of methodologies for calculating the heat release rates of mining vehicle fires in underground mines. Fire Safety Journal. 2015;71:194–216. https://doi.org/10.1016/j.firesaf.2014.11.008

11. Danilov A. I., Maslak V. A., Vagin A. V., Sivakov I. A. Numerical simulation of a subway car fire. Fire and Explosion Safety. 2017;26(10):27-35. (In Russ.) https://doi.org/10.18322/pvb.2017.26.10.27-35

12. Paleev D. Yu., Lukashov O. Yu., Kosterenko V. N. et al. Shock waves during explosions in coal mines. In: Mining Engineer’s Library. Volume 6 “Industrial Safety”. Part 3. Мoscow: Gornoe Delo Publ, Cimmerian Center LLC; 2011. 312 p. (In Russ.)

13. Smolin I. M., Poletayev N. L., Gordienko D. M. et al. Manual for the application of SP 12.13130.2009 “Determining the categories of premises, buildings, and outdoor installations in terms of explosion and fire hazard”. Мoscow: VNIIPO Publ.; 2014. 147 p. (In Russ.) URL: https://ohranatruda.ru/upload/iblock/c84/4293768102.pdf

14. Karsakov O. G. On the problem of justifying the critical time of a fire at the initial stage. Problemy obespecheniya bezopasnosti pri likvidatsii posledstviy chrezvychaynykh situatsiy. 2015;4(1–1):330–332. (In Russ.)

15. Ivannikov V. P., Klyus P. P. Fire extinguishing manager’s handbook. Мoscow: Stroyizdat Publ.; 1987. 288 p. (In Russ.)

16. Bystritsky G. F., Gasangadzhiev G. G., Kozhichenkov V. S. General power engineering. Core equipment. Textbook. 2nd update. Moscow: Yurait Publ. House; 2018. 416 p. (In Russ.) URL: https://mx3.urait.ru/uploads/pdf_review/90FAE97C-FD7D-41FC-ACD5-6E038A39261C.pdf

17. Kolesnitchenko I. E., Kolesnitchenko E. A., Artemiev V. B., Icheretchukin V. G. Dependence of volumetrically concentration limit of methane blasting on physical parameters of the atmosphere. Mining Informational and Analytical Bulletin. 2015;(S7):174–181. (In Russ.)

18. Cherdancev N. V., Zykov V. S. The solution to a problem of in-seam working areas abutment pressure parameters determination based on the simulation experiment. Bulletin of Scientific Centre VostNII for Industrial and Environmental Safety. 2017;(3):16–30. (In Russ.) URL: http://vestnik.nc-vostnii.ru/arhiv/vypusk-3-2017/reshenie-zadachi-opredeleniya-parametrov-opornogo-davleniya-v-okrestnosti-plastovoy-vyrabotki-naosnove-vychislitelnogo-eksperimenta/

19. Levin L. Y., Semin M. A., Zaitsev A. V. Mathematical methods of forecasting microclimate conditions in an arbitrary layout network of underground excavations. Journal of Mining Science. 2014;50(2):371–378. https://doi.org/10.1134/S1062739114020203 (Orig. ver.: Levin L. Y., Semin M. A., Zaitsev A. V. Mathematical methods of forecasting microclimate conditions in an arbitrary layout network of underground excavations. Fiziko-Texhnicheskiye Problemy Razrabbotki Poleznykh Iskopaemykh. 2014;(2):154–161. (In Russ.))


Review

For citations:


Perestoronin M.O., Parshakov O.S., Popov M.D. Parameterization of a ventilation network model for the analysis of mine working emergency ventilation modes. Mining Science and Technology (Russia). 2023;8(2):150–161. https://doi.org/10.17073/2500-0632-2022-10-13

Views: 2680


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0632 (Online)