Full Text:


Among the reliable tunneling complexes, without which it is impossible to create conditions for such a high-performance process, as mining of mine workings are geokhods. Since the geometric parameters of the external engine and the screw channel vary, the  process of interaction of the geokhod systems with the geo- environment and with each other requires mathematical modeling. Modeling allows presenting schemes of interaction with  various environments: loose (viscous-mobile) and strong. The  mobility of the geoenvironment provides interaction along the entire  supporting surface of the blade, so increasing the blade area leads to an increase in tractive effort. In strong rocks, the interaction occurs  along the supporting surface of the blade, and the free surface may  not touch the rock. Thus, in the interaction of the external propeller (HP) with the geoenvironment, the blade deforms; it is possible to  form a region of crushing of the rock, and taking into account the  elastic deformation in determining the geometric parameters of the  blade and the canal will minimize the process of forming the region  of crushing; when modeling the process of interaction of the VD with the medium, the load can be considered as uniformly distributed and equal to the ultimate strength of the rock for uniaxial compression.

About the Authors

V. Yu. Beglyakov
National Research Tomsk Polytechnic University Yurga Institute of Technology
Russian Federation

Dr. Sci. (Tech.), associate professor

Address: 652050, Yurga, Leningradskaya str., 26

V. V. Aksenov
Institute of Coal of the Siberian Branch of the RAS
Russian Federation

Dr. Sci. (Tech.), Professor

Address: 650000, Kemerovo, ave. Sovetski, 18

I. K. Kostinets
Branch of Kuzbass State Technical University named after T.F. Gorbachev
Russian Federation


Address: 652644, Kemerovo Region, Belovo, town of. Inskoy, st. Ilyich, 32a

A. A. Khoreshok
T.F. Gorbachev Kuzbass State Technical University
Russian Federation

Dr. Sci. (Tech.), Professor

Address: 650000, Kemerovo, Vesennyaya Str., 28


1. Begljakov V.Ju., Aksenov V.V. Poverh-nost' zaboja pri prohodke gornoj vyrabotki geohodom: monografija [A surface of the face during the mining of the mine by the geodatabase: a monograph]. V.Ju. Begljakov, V.V. Aksenov. LAP LAMBERT Academic Publishing GmbH & Co. KG Heinrich-Böcking- Str. 6-8, 66121 Saarbrücken, Germany, 2012, 139 p.

2. Gallager R. Metod konechnyh jelementov. Osnovy. [Finite element method. Basics]. R. Gallager. Moscow, Mir, 1984, 428 p.

3. Aljamovskij A.A. SolidWorks. Inzhenernyj analiz metodom konechnyh jelementov [Engineering analysis by the finite element method]. Moscow, DMK Press, 2004, 432 p.

4. Aleksandrov A.V., Potapov V.D., Derzhavin B.P. Soprotivlenie materialov. [Strength of materials]. Moscow, Vysshaja shkola, 2009, 560 p.

5. Modelirovanie naprjazhenno-deformirovannogo sostojanija porody, sozdavaemogo vozdejstviem na nejo ispolnitel'nogo organa gornoj mashiny [Modeling of the stress- strain state of the rock created by the action of the executive body of the mining machine on it] Aksenov V.V., Efremenkov D.B., Begljakov V.Ju. Mining Informational and Analytical Bulletin. Perspektivy razvitija gorno-transportnyh mashin i oborudovanija [Prospects for the development of mining transport vehicles and equipment]. Moscow, MSMU, 2011, OV no. 5.

6. Shtumpf G.G., Ryzhkov Ju.A., Shalmanov V.A., Petrov A.I. Sh 48 Fizikotehnicheskie svojstva gornyh porod i uglej Kuzneckogo bassejna: Spravochnik [Physicotechnical properties of rocks and coals of the Kuznetsk basin: Reference book.]. Moscow, Nedra, 1994, 447 p., ill.

7. Aksenov V.V., Begljakov V.Ju., Kazancev A.A., Kostinec I.K., Koperchuk A.V. Klassifikacija geometricheskih parametrov vneshnego dvizhitelja geohoda [Classification of geometric parameters of an external propeller of geokhod]. Gornoe oborudovanie i jelektromehanika, 2016, no. 8(126), pp. 33-39.

8. Skorenko T. Vvinchivajas' v grjaz' [Screwing in the dirt].Populjarnaja mehanika, 2011, no. 5(103), pp. 56-59.

9. Batrak Ju.A., Istomina S.V., Shestopal V.P. Opredelenie gidrodinamicheskih nagruzok na vinte v sisteme proektirovanija valoprovodov ShaftDesigner [Determination of hydrodynamic loads on the screw in the ShaftDesigner shafting system].

10. Broere W., Faassen T.F., Arends G., van Tol A.F. Modelling the boring of curves in (very) soft soils during microtunnelling. Tunnelling and Underground Space Technology, 2007, 22 (5-6), pp. 600-609. DOI: 10.1016/j.tust.2007.06.002.

11. Deng K., Wang H. Analysis of the carrying capacity of the propelling mechanism of tunneling machines. Journal of Mechanical Science and Technology, 2015, 29 (8), pp. 3343-3349. DOI: 10.1007/s12206-015-0731-8.

12. Festa D., Broere W., Bosch J.W. Kinematic behaviour of a Tunnel Boring Machine in soft soil: Theory and observations. Tunnelling and Underground Space Technology, 2015, 49, pp. 208-217. DOI: 10.1016/j.tust.2015.03.007.

13. Kasper T., Meschke G. On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling. Tunnelling and Underground Space Technology, 2006, 21 (2), pp. 160-171. DOI: 10.1016/j.tust.2005.06.006.

14. Koyama Y. Present status and technology of shield tunneling method in Japan. Tunnelling and Underground Space Technology, 2003, 18 (2-3), pp. 145-159. DOI: 10.1016/S0886-7798(03)00040-3.

15. Nagel F. Numerical Modelling of Partially Saturated Soil and Simulation of shield-supported Tunnel Advance, Ph. Numerical Modelling of Partially Saturated Soil and Simulation of Shield Supported Tunnel Advance, 2009.

16. Peila D., Oggeri C., Borio L. Using the slump test to assess the behavior of conditioned soil for EPB tunneling. Environmental and Engineering Geoscience, 2009, 15 (3), pp. 167-174. DOI: 10.2113/gseegeosci.15.3.167.

17. Shi H., Gong G., Yang H., Mei X. Compliance of hydraulic system and its applications in thrust system design of shield tunneling machine. Science China Technological Sciences, 2013, 56 (9), pp. 2124-2131. DOI: 10.1007/s11431-013-5248-8.

18. Tang X., Deng K., Wang L., Chen X. Research on natural frequency characteristics of thrust system for EPB machines. Automation in Construction, 2012, 22, pp. 491-497. DOI: 10.1016/j.autcon.2011.11.008

19. Wang L., Gong G., Shi H., Yang H. Modeling and analysis of thrust force for EPB shield tunneling machine. Automation in Construction, 2012, 27, pp. 138-146. DOI: 10.1016/j.autcon.2012.02.004.

Supplementary files

For citation: Beglyakov V.Y., Aksenov V.V., Kostinets I.K., Khoreshok A.A. LOAD DIAGRAMS FOR MODELING THE PROCESS OF INTERACTION OF EXTERNAL GEOKHOD MOVE WITH A AROUND CONTUR MASSIVE ROCKS. Gornye nauki i tekhnologii = Mining Science and Technology (Russia). 2017;(3):3-10. https://doi.org/10.17073/2500-0632-2017-3-3-8

Views: 150


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2500-0632 (Online)