Full Text:


The creation of machines for heavy mining conditions is impossible without solving the problems associated with the drive. The widely  used hydraulic drive has a number of drawbacks that can not make it uniquely acceptable. More successful is the electric drive, which  takes advantage of the stepping electric drive, but its scope is  limited by the parameters of the hydraulic motors. That is why it is  necessary to create a so-called discrete hydro motor drive that  would allow generating pulses of small volumes with high  frequencies to move the output links to specified distances with high accuracy in a wide range of speeds. This determines the relevance of the scientific and practical task under consideration. Conclusion: the  use of dispensers will allow the implementation of discrete hydraulic drive systems, but for its final implementation it is necessary to  justify the dynamic and geometric parameters of the device, as well as circuit solutions for the use of such dispensers.

About the Author

I. V. Doroshenko
Yurginsky Technological Institute (branch) of the Federal State Optical Institute of the National Research Tomsk Polytechnic University
Russian Federation

Address: 652050, Kemerovo Region, Yurga City District, Yurga, 
Leningradskaya Str., 26


1. Sveshnikov V.K., Usov A.A. Stanochnye gidroprivody [Machine hydraulic drives]. Moscow, Mashinostroenie, 1982, 312 p.

2. Sosonkin V.L. Diskretnaja gidroavtomatika [Discrete Hydraulic Automation]. Moscow, Mashinostroenie, 1972.

3. Aksenov V.V., Horeshok A.A., Efremenkov A.B., Kazancev A.A., Begljakov V.Ju., Val'ter A.V. Sozdanie novogo instrumentarija dlja formirovanija podzemnogo prostranstva [Creation of a new tool for the formation of underground space]. Gornaja tehnika, 2015, no. 1(15), pp. 24-26.

4. Aksenov V.V., Val'ter A.V. Specifika geohoda kak predmeta proizvodstva [Specificity of the geodrome as an object of production]. Nauchnoe obozrenie, 2014, vol. 8, no. 3, pp. 945-949.

5. Aksenov V.V., Begljakov V.Ju., Kazancev A.A., Val'ter A.V., Efremenkov A.B. Opyt uchastija v proekte po organizacii vysokotehnologichnogo proizvodstva [Experience of participation in the project on organization of high-tech production]. Gornoe oborudovanie i jelektromehanika, 2016,no. 8(126), pp. 8–15.

6. Val'ter A.V., Aksenov V.V., Begljakov V.Ju., Chazov P.A. Opredelenie pogreshnosti raspolozhenija sektorov stabilizirujushhej sekcii geohoda na osnove dannyh koordinatnogo kontrolja [Determining the error of location of geokhod stabilizing section sectors on the basis of coordinate measurement data]. Obrabotka metallov (tehnologija, oborudovanie, instrumenty), 2015, no. 4, pp. 31-42.

7. Aksenov V.V., Efremenkov A.B., Timofeev V.Ju., Begljakov V.Ju., Blashchuk M.Ju. Prohodcheskij shhitovoj agregat (Geohod) [Tunnelling Header Unit (Geovehicle)] Patent RUS, no. 2418950, 2011, bull. no. 14.

8. Obshhaja metodika naladki metalloobrabatyvajushhih stankov [General procedure for setting up metalworking machines]. Electronic resource. Available at:

9. Krauin'sh P.Ja., Begljakov V.Ju., Blashchuk M.Ju., Smajlov S.A. Obemnyj dozator dlja diskretnogo regulirovanija skorosti i velichiny peremeshhenij vyhodnyh zven'ev gidrodvigatelej [Volume Proportioner for Discrete Adjustment of Hydraulic Motor output Link Speed and Travel]. Patent RUS, no. 2328625, 2008, bull. no. 19.

10. Blashchuk M.Ju. Obosnovanie parametrov transmissii geohodov s gidroprivodom. Avtoref. disser. kand.tehn.nauk [The rationale for the parameters of the transmission of geohydraulics with hydraulic drive. Cand. Tech. Sci. Abstract]. Kemerovo, 2012, KSTU, 19 p.

11. Bruland A. Hard rock tunnel boring. Hard Rock Tunnel Boring, 1998.

12. Deng K., Zhang X., Yang J., Wang H. Deformation characteristics under variable stiffness for the propelling mechanism of EPB shield machines in mixed ground. Journal of Mechanical Science and Technology, 2014, 28 (9), pp. 3679- 3685. DOI: 10.1007/s12206-014-0829-4.

13. Festa D., Broere W., Bosch J.W. Tunnelling in soft soil: Tunnel Boring Machine operation and soil response, 2013.

14. Kongshu D., Xiaoqiang T., Liping W., Xu C. Research on characteristics of deformation in thrust system for EPB shield machines. Tunnelling and Underground Space Technology, 2011, 26(1), pp. 15-21. DOI: 10.1016/j.tust.2010.06.008.

15. Mair R.J., Taylor R.N. Prediction of clay behaviour around tunnels using plasticity solutions. Predictive soil mechanics. Proc. of the Wroth memorial symposium, Oxford, 1992, pp. 449-463.

16. Nagel F., Stascheit J., Meschke G. Prozessorientierte numerische Simulation schildgestützter Tunnelvortriebe in Lockerböden [Process-oriented numerical simulation of shield-supported tunnelling in soft soils]. Geomechanik und Tunnelbau, 2010, 3 (3), pp. 268-282.

17. Rostami J. Study of pressure distribution within the crushed zone in the contact area between rock and disc cutters. International Journal of Rock Mechanics and Mining Sciences, 2013, 57, pp. 172-186. DOI: 10.1016/j.ijrmms.2012.07.031.

18. Sugimoto M., Sramoon A. Theoretical model of shield behavior during excavation. I: Theory. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128 (2), pp. 138-155. DOI: 10.1061/(ASCE)1090-0241(2002)128:2(138).

19. Verruijt A. A complex variable solution for a deforming circular tunnel in an elastic half-plane. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(2), pp. 77-89.

Supplementary files

For citation: Doroshenko I.V. SUBSTANTIATION OF THE NEED TO CREATE DISCRETE HYDRAULIC DRIVE SYSTEMS WITH A THIN FORMATION OF FLOW PULSES. Gornye nauki i tekhnologii = Mining Science and Technology (Russia). 2017;(3):11-17.

Views: 209


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2500-0632 (Online)