State of the issue of the power supply system's reliability
https://doi.org/10.17073/2500-0632-2017-3-47-73
Abstract
The electric power system of the Russian Federation was most developed in the 80-90s of the last century, after which there was an almost twofold decline in the generation and transmission of electrical energy in the system with subsequent growth. The main problem of fuel and energy complexes is the progressive aging of fixed production assets in conditions of increasing energy consumption requirements, which is a source of increased risk of major accidents. In this case, negative disturbances can arise both in the system itself and be external to it and can lead not only to a low quality of electrical energy but also to interruptions in power supply. The studies carried out to date are devoted to a quantitative assessment of the reliability of power supply systems and their equipment and do not take into account the effects of electrical equipment failures on the characteristics of production processes and the operation of technological machines. To consider the reliability of power supply systems in isolation from the operation of other systems (technological, relay protection, automation, ventilation, dewatering, etc.) means not to use the whole range of measures aimed at improving the reliability of electricity supply, as a result it is impossible to ensure the optimum level of reliability of electricity supply. Reliability of the power supply system must be evaluated taking into account the interaction of electrical equipment with the equipment of all production systems. The problem of increasing the efficiency of the functioning of industrial enterprises by optimizing the parameters of the reliability of power supply systems is topical and of great economic importance.
About the Authors
A. N. ShpiganovichRussian Federation
Head of the Electrical Equipment Department, Professor, Dr. Sci. (Tech.)
Address: 30, Moskovskaya st., Lipetsk, Russia, 398600
A. A. Shpiganovich
Russian Federation
Dr. Sci. (Tech.), Professor
Address: 30, Moskovskaya st., Lipetsk, Russia, 398600
V. I. Zatsepina
Russian Federation
Dr. Sci. (Tech.), Professor
Address: 30, Moskovskaya st., Lipetsk, Russia, 398600
E. P. Zatsepin
Russian Federation
Cand. Sci. (Tech.), Associate Professor
Address: 30, Moskovskaya st., Lipetsk, Russia, 398600
References
1. Shpiganovich A.N. Ocenka oborudovanija po urovnju nadezhnosti na primere sistem jelektrosnabzhenija staleplavil'nyh proizvodstv [Evaluation of the product at the level of reliability on the example of power steelmaking]. A.N. Shpiganovich, A.A. Shpiganovich, E.P. Zatsepin. News of Higher Educational Institutions of the Chernozem Region, 2017, no. 1, pp. 38-46.
2. Gracheva E.I. Optimizacija proektirovanija sistem jelektrosnabzhenija s uchetom vozmozhnyh situacij i verojatnostnyh parametrov nadezhnosti [Optimization of the design of power supply systems tak-ing into account possible situations and probabilistic reliability parameters]. Gracheva E.I., Sadykov R.R. News of Higher Educational Institutions of the Chernozem Region, 2017, no. 2, pp. 22-26.
3. Abramovich B.N. Perenaprjazhenija i jelektromagnitnaja sovmestimost' oborudovanija jelektricheskih setej 6−35 kV [Overvoltage and electromagnetic compatibility of equipment of electric networks 6−35 kV]. B.N. Abramovich, S.A. Kabanov, A.V. Sergeev. Novosti jelektrotehniki, 2002, no. 5(17).
4. Sin'chugov F.I. Nadezhnost' jelektricheskih setej jenergosistem [Reliability of power grids]. F.I. Sin'chugov. Moscow, JeNAS, 1998, 328 p.
5. Mironov I.M. Rezhim zazemlenija nejtrali v setjah 6 35 kV. Nuzhno li otkazyvat'sja ot kompensacii emkostnogo toka na zemlju [Ground neutral mode in networks of 6−35 kV. Is it necessary to refuse compensation of the capacitive current to ground]. I.M. Mironov. Novosti jelektrotehniki, 2003, no. 6(24).
6. Konovalov E.F. Kompensacija emkostnogo toka v setjah 6−35 kV v Rossii, Germanii [Compensation of the capacitive current in 6-35 kV networks in Russia, Germany]. E.F. Konovalov, T.V. Zaharova, T. Foman. Jenergetik, 2004, no. 4, pp. 23-28.
7. Rihte I. Kompensacija emkostnyh tokov zamykanija na zemlju v stjah vysokogo naprjazhenija [Compensation of capacitive earth fault currents in high voltage networks]. I. Rihter. Jelektrichestvo, 1961, no. 11, pp. 13-16.
8. Valeev G.S. Chetyrehsterzhnevoj dugogasjashhij reaktor s podmagnichivaniem [Four- rod arc-suppression reactor with bias]. G.S. Valeev, O.A. Petrov, E.D. Panova. Jelektricheskie stancii, 1983, no. 3, pp. 21-25.
9. Osipov Je.R. Sravnitel'nyj analiz sposobov zazemlenija nejtrali v zadache podavlenija dugovyh zamykanij na zemlju [Comparative analysis of neutral grounding methods in the problem of suppressing arc faults on the ground]. Je.R. Osipov, V.K. Obabkov. News of the Higher Institutions. Mining Journal, 1988, no. 3, pp. 37-41.
10. Vladimirskij L.L. Rabota setej naprjazheniem 6−35 kV s razlichnymi sposobami zazemlenija nejtrali [Operation of 6-35 kV networks with various neutral grounding methods]. L.L. Vladimirskij, V.A. Kuhtinov. Jenergetik, 2005, no. 4, pp. 23-27.
11. Malafeev S.I. Zashhita jelektricheskoj seti s izolirovannoj nejtral'ju pri odnofaznyh zamykanijah na zemlju [Protection of an electrical network with an isolated neutral with single-phase earth faults]. S.I. Malafeev, V.S. Mamaj, A.V. Anchugin. Promyshlennaja jenergetika, 2003, no. 5, pp. 19-23.
12. Dubinchik E.A. Dugogasjashhie reaktory s plavnoj nastrojkoj [Arcsuppression reactors with smooth tuning]. E.A. Dubinchik, A.I. Tarasov. Jenergetik, 1970, no. 2, pp. 23-27.
13. Sapunkov, M.L. Harakteristiki dugogasjashhego reaktora s fazno-impul'snym regulirovaniem [Characteristics of an arc extinguishing reactor with phase-pulse control]. M.L. Sapunkov, V.S. Bondarchuk, P.A. Dolganov. News of the Higher Institutions. Mining Journal, 1983, no. 5, pp. 37-39.
14. GOST 721-77−1978. Sistemy jelektrosnabzhenija, seti, istochniki, preobrazovateli i priemniki jelektricheskoj jenergii. Nominal'noe naprjazhenie svyshe 1000 V. [State Standard 721-77−1978. Power supply systems, networks, sources, converters and receivers of electric energy. Rated voltage over 1000 V.] Moscow, Publ. IPK Izdatel''stvo Standartov, 1978, 3 p.
15. Ryan H.M. High voltage engineering and testing. H.M. Ryan. London, The Institution of Electrical Engineers, 2001, 759 p.
16. Shpiganovich A.N. Vnutrizavodskoe jelektrosnabzhenie i rezhimy [Intraplant power supply and modes]. A.N. Shpiganovich, K.D. Zaharov. Lipetsk, LSTU, 2007, 759 p.
17. Kadomskaja K.P. Perenaprjazhenija v jelektricheskih setjah razlichnogo naznachenija i zashhity ot nih [Overvoltages in electrical networks of various purposes and protection from them]. K.P. Kadomskaja, A.A. Lavrov, A.A. Rejherdt. Novosibirsk, NSTU, 2004, 368 p.
18. Naidu M.S. High voltage engineering. M.S. Naidu, V. Kamarju. New York, Tata McGraw-Hill Publishing Company Limited, 1996, 378 p.
19. Abdel-Salam M. High-voltage engineering: theory and practice. M. Abdel-Salam [and other]. New York, Marcel Dekker, 2000, 725 p.
20. Lobastov S.V. Issledovanie vysokochastotnyh perehodnyh processov v kabel'nyh setjah 6−35 kV pri dugovyh zamykanijah na zemlju [Investigation of high-frequency transients in cable networks 6-35 kV with arc faults on the ground]. S.V. Lobastov. Jelektrik, 2009, no. 3, pp. 13-16.
21. Ivanov A.V. Analiz kommutacionnoj sposobnosti jelegazovyh i vakuumnyh vykljuchatelej, ustanovlennyh v setjah generatornogo naprjazhenija i sobstvennyh nuzhd blokov jelektricheskih stancij [Analysis of the switching capacity of gas- insulated and vacuum circuit breakers installed in generator voltage networks and auxiliary needs of power station units]. A.V. Ivanov, K.P. Kadomskaja. Trudy Tretej Vserossijskoj nauch.-tehn. konf. [Proc. 3rd All- Russian Sci. and Tech. conf.]. Novosibirsk, 2004, pp. 81-90.
22. Evdokunin G.A. Perenaprjazhenija v setjah 6(10) kV sozdavaemymi pri kommutacijah kak vakuumnymi, tak i jelegazovymi vykljuchateljami [Overvoltages in 6 (10) kV networks created by switching both vacuum and SF6 circuit-breakers]. Electronic resource. G.A. Evdokunin, S.S. Titenkov. Novosti jelektrotehniki: informacionno spravochnoe izdanie, 2002, no. 5(17). Available at: http://www.news.elteh.ru/arh/2002.17.06.php.
23. Abramovich B.N. Perenaprjazhenija i jelektromagnitnaja sovmestimost' oborudovanija jelektricheskih setej 6-35 kV [Overvoltage and electromagnetic compatibility of electrical equipment 6-35 kV]. Abramovich B.N., et. al. Novosti jelektrotehniki: informacionno spravochnoe izdanie,2002, no. 5(17). Available at: http://www.news.elteh.ru/arh/2002/17/05.php.
24. Kadomskaja K.P. Ogranichenie perenaprjazhenij v jelektricheskih setjah, soderzhashhih avtonomnye istochniki pitanija i setjah generatornogo naprjazhenija [Limitation of overvoltages in electrical networks containing autonomous power supplies and generator voltage networks]. K.P. Kadomskaja, N.F. Petrova. Trudy Chetvertoj Vserossijskoj nauch.-tehn. konf. [Proc. 4th All- Russian Sci. and Tech. conf.]. Novosibirsk, 2006, pp. 84-90.
25. Stewart S. Distribution switchgear. S. Stewart. United Kingdom, The Institution of Engineering and Technology, 2008, 510 p.
26. Slade P.G. The vacuum interrupter: theory, design, and application. P.G. Slade. New York, CRC press Taylors Francis Group, 2008, 510 p.
27. Henry J.C. The behavior of SF puffer circuit-breakers under exceptionally severe condition. J.C. Henry, G. Perrissin, C. Rollier. Cahier Technique Schneider Electric, 2002, no. 101, 15 p.
28. Picot P. Vacuum switching. P. Picot. Cahier Technique Schneider Electric, 2000, no. 198, 32 p.
29. Kachesov V.E. Perenaprjazhenija i ih ogranichenija zatormozhennyh jelektrodvigatelej vakuumnymi vykljuchateljami [Overvoltages and their limitations on braked electric motors by vacuum switches]. V.E. Kachesov. Jelektrichestvo, 2008, no. 3. pp. 15-26.
30. Garzon R.D. High voltage circuit breakers: design and application. R.D. Garzon. New York, Marcel Dekker, 1996, 365 p.
31. Krajchik, Ju.S. Garmoniki nekanonicheskih porjadkov v shemah s upravljaemymi vyprjamiteljami [Harmonics of non-canonical orders in circuits with controlled rectifiers]. Ju.S. Krajchik. Jenergetika i transport, 1966, no. 5, pp. 84-90.
32. Bosh V.I. Povyshenie jeffektivnosti funkcionirovanija sistem jelektrosnabzhenija s rezonansnymi javlenijami garmonicheskih sostavljajushhihv staleplavil'nyh i prokatnyh proizvodstvah. [Increase of efficiency of functioning of systems of electron supply with resonant phenomena of harmonic components in steelmaking and rolling manufactures]. V.I. Bosh. Lipetsk, LSTU, 2005, 156 p.
33. Shpiganovich A.N. Sluchajnye impul'snye potoki [Random pulse streams]. A.N. Shpiganovich, A.A. Shpiganovich, V.I. Bosh. Yelets-Lipetsk, 2004, 292 p.
34. Shpiganovich A.N. Ocenka nadezhnosti nerazvetvlennyh sistem [Evaluation of the reliability of unbranched systems]. A.N. Shpiganovich. News of the Higher Institutions. Mining Journal, 1983, no. 5, pp. 52-64.
35. Shpiganovich A.N. Sluchajnye potoki v reshenii verojatnostnyh zadach [Random flows in the solution of probabilistic problems]. A.N. Shpiganovich, A.A. Shpiganovich, V.I. Bosh. Lipetsk, 2003. – 224 p.
36. Rioual P. Impact of the distribution and transmission systems of harmonic current injection due to capacitive load rectifiers in commercial, residential and industrial installations. P. Rioual, T. Deflandre. EPE Sevilla, 1995, no. 3, pp. 503-508.
37. Daniel S.D. Quality enhances reliability. S.D. Daniel, S. Ashok. Spectrum IEEE, 1996, no. 2, pp. 38-44.
38. Maksimovic D. Fundamentals of power electronics. D. Maksimovic, R.W. Erickson. NewYork, Kluwer Academic, 2004, 900 p.
39. Peng F.Z. A new approach to harmonic compensation power system. F.Z. Peng, H. Akagi, S. Koga. IEEE IAS 23-th Annu. Meet., Pittsburg, 1998, 215 р.
40. Rivas D. Improving Passive Filter Compensation Perforamance With Active Techniques. D. Rivas, L. Moran. ITTT transactions on industrial electronics, 2003, no. 1, pp. 161-170.
41. Gyugyi, L. Power filters. L. Gyugyi, E.C. Stricula. IEEE IAS, Annu. Meet., Ind, 1976, pp. 529-535.
42. Akagi H. Instantaneous reactive power compensator comprising switching devices without energy storage components. H. Akagi, Y. Kanazawa, A. Nabae. IEEE Trans. on IA, IA-20, 1984, no. 3, pp. 625-630.
43. Akagi H. Generalized theory of the instanttaneous reactive power in threephase circuits. H. Akagi, Y. Kanazawa, A. Nabae. Proc. IPEC-Tokyo83 Int. Conf. Power Electronics, pp. 1375-1386.
44. Akagi H. Generalized theory of instantaneous reactive power and its application. H. Akagi, Y. Kanazawa, K. Fujita. Electrical Engineering in Japan, 1983, no. 103, pp. 58-66.
45. Benghanem M. A new harmonics elimination method applied to a static VAR compensator using a three level inverter. M. Benghanem, A. Draou. Leonardo Journal of Sciences, 2005, no. 6, pp. 1-16.
46. Benghanem M. Technique of Harmonics Elimination Method Applied to an N.P.C. Topology Three Level Inverter. M. Benghanem, A. Draou, A. Tahri. International Conference on Communication, Computer &Power (ICCCP), Muscat Sultanate of Oman, 2001.
47. Mazari B. Fuzzy Hysteresis Control and Parameter Optimization of a Shunt Active Power Filter. B. Mazari, F. Mekri. Journal of information science and engineering, 2005, no. 21, pp. 1139-1156.
48. Bose B.K. An adaptive hysteresis-band current control technique of a voltage fed PWM inverter for machine drive system. B.K. Bose. IEEE Transactions on Industrial Electronics, 1990, no. 37, pp. 402-408.
49. Abdeslam D.O. Neural Approach for the Control of an Active Power Filter. D.O. Abdeslam, P. Wira, J.A. Mercle. 5th international Power Electronics Conference (IPEC2005), 2005.
50. Bansal R.C. Artifical Intelligence Techniques for Reactive Power. Voltage Control in Power Systems: A Review. R.C. Bansal, T.S. Bhatti, D.P. Kothari. International Journal of Power and Energy Systems, 2003, no. 23, pp. 81-89.
51. Stacey E.J. Hybrid power filters. E.J. Stacey. IEEE IAS, Annu meet, 1977, pp. 1133-1140.
52. Akagi H. New Trends in Active filters for Power Conditioning. H. Akagi. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1996, no. 6, pp. 1312-1322.
53. Yu-Long C. Simulation and reliability analysis of shunt active power theory. C. Yu-Long, L. Hong, W. Jing-Gin. Journal of Zhejiang University Science, 2007, no. 3, pp. 416-421.
54. Ajami A. Hosseini S.H. Implemention of a Novel Control Strategy for Shunt Active Filter. A. Ajami, S.H. Hosseini. Ecti transactions on electrical eng., electronics and communications, 2006, no. 1, pp. 40-46.
55. Erickson R.W. Some Topologies of High Quality Rectifiers. R.W. Erickson. First International Conference on Energy, Power, and Motion Control, 1997, pp. 1-6.
56. Graovac D. Universal power quality system – an extension to universal power quality conditioner. D. Graovac, V. Katic, A. Rufer. 9th international conference on power electronics and motion control, 2000, no. 4, pp. 32-38.
57. Gaiceanu M. Active power compensator of the current harmonics based on the instantaneous power theory. M. Gaiceanu. The annals of dunarea de jos university of galati fascicle III, 2005, pp. 23-28.
58. Vleeschauwer V. Current waveform control of a three-phase AC-DC converter with resistive shunt harmonic impedance behavior. V. Vleeschauwer, K.D. Gusseme, W.R. Ryckaert. 3rd Benelux young researchers Symposium in electrical power engineering. Ghent, 2006, no. 41, pp. 1-5.
59. Singh B. Active power filter with sliding mode control. B. Singh, K. Alhaddad, A. Chandra. IEEE Proc.-Gener, 1997, no. 6, pp. 564-568.
60. Fujita H. A hybrid active filter for damping of harmonic resonance in industrial power system. H. Fujita, T. Yamasaki. IEEE transactions on power IEEE Transactions on Power Electronics, 2000, vol. 15, no. 2, pp. 215-222,
61. Tong J.K. Konstrukcija vysokovol'tnyh ogranichitelej perenaprjazhenija v polimernom korpuse [Design of high-voltage surge arresters in a polymer enclosure]. J.K. Tong, I.A. Markelov. Jenergetik, 2004, no. 5, pp. 38-39.
62. Abramovich B.N. Perenaprjazhenija i jelektromagnitnaja sovmestimost' oborudovanija jelektricheskih setej 635 [Overvoltage and electromagnetic compatibility of electrical network equipment 635]. B.N. Abramovich, S.I. Kabanov, A.N. Sergeev. Novosti jelektrotehniki, 2002, no. 5.
63. Lychkovskij G.I. Mikroprocessornaja tokovaja zashhita shin 610 kV [Microprocessor current protection of 6-10 kV buses]. G.I. Lychkovskij. Jelektrik, 2003, no. 10, pp. 34-37.
64. Fishman V.S. Provaly naprjazhenija v setjah promyshlennyh predprijatij [Voltage dips in the networks of industrial enterprises]. V.S. Fishman. Novosti jelektrotehniki, 2004, no. 5(29).
65. Chernyh I.A. Provaly naprjazhenija v sistemah jelektrosnabzhenija promyshlennyh predprijatij [Voltage dips in industrial power supply systems]. I.A. Chernyh, I.G. Shilov. Vesti vysshih uchebnyh zavedenij Chernozem'ja, 2005, no. 1, pp. 27-29.
66. Shpiganovich A.N. Provaly naprjazhenija v vysokovol'tnyh jelektricheskih setjah [Voltage dips in high-voltage electrical networks]. A.N. Shpiganovich, I.A. Chernyh, I.G. Shilov. News of Higher Educational Institutions of the Chernozem Region, 2006, no. 1.
67. Pupin V.M. Ustrojstva zashhity ot provalov naprjazhenija. The app. to the journal Jenergetik, 2011, no. 5(149).
68. Borodin B.N. Sistemnyj podhod k povysheniju nadezhnosti jelektrosnabzhenija potrebitelej Oskol'skogo jelektrometallurgicheskogo kombinata [A systematic approach to improving the reliability of power supply for consumers of the Oskol Electrometallurgical Combine] / B.N. Borodin, V.M. Pupin, M.S. Egorova. Promyshlennaja jenergetika, 2008, no. 11, pp. 32-36.
69. GOST 27.00289. Nadezhnost' v tehnike. Osnovnye ponjatija, terminy i opredelenija». [State Standard 27.00289. Industrial product dependability. General concepts. Terms and definitions]. Moscow, Publ. IPK Izdatel''stvo Standartov, 1990, 24 p.
70. GOST 27.00389. Nadezhnost' v tehnike. Sostav i obshhie pravila zadanija trebovanij po nadezhnosti. [State Standard 27.00389. Industrial product dependability. Dependability requirements: contents and general rules for specifying]. Moscow, Publ. IPK Izdatel''stvo Standartov, 1992, 20 p.
71. RD 50.656-88. Raschety bezotkaznosti vosstanavlivaemyh sistem. [Guidance document 50.656-88. Calculations of fail-safe recovery systems]. Moscow, Publ. IPK Izdatel''stvo Standartov, 1988, 22 p.
72. RD 50.690-89. Ocenka pokazatelej nadezhnosti po jeksperimental'nym dannym. [Guidance document 50.690-89. Evaluation of reliability indicators from experimental data]. Moscow, Publ. IPK Izdatel''stvo Standartov, 1990, 132 p.
73. Andreev R.A. Relejnaja zashhita i avtomatika sistem jelektrosnabzhenija [Relay protection and automation of power supply systems]. R.A. Andreev. Moscow, Vysshaya Shkola Publishers, 2006, 639 p.
74. Ivanov E.I. Problemy diagnostirovanija izoljacii jelektroustanovok naprjazheniem 6 kV i vyshe [Problems of diagnosing insulation of electrical installations with a voltage of 6 kV and higher]. E.I. Ivanov. Novosti jelektrotehniki, 2001, no. 3(9).
75. Gurevich V. Problemy vyhodnyh rele, ispol'zuemye v mikroprocessornyh ustrojstvah relejnoj zashhity [Problems of output relays used in microprocessorbased relay protection devices]. V. Gurevich. Jelektricheskie seti i sistemy, 2007, no. 1, pp. 66-74.
76. Shilov I.G. Imitacionnaja model' Ustrojstva dinamicheskoj kompensacii perenaprjazhenij [Simulation model Dynamic overvoltage compensation devices]. I.G. Shilov, V.I. Zacepina. Nauchnye problemy transporta Sibiri i Dal'nogo Vostoka, 2009, no. 1, pp. 379-389.
77. Shpiganovich A.N. O vosstanovlenii jelektrosnabzhenija pri kratkovremennyh provalah naprjazhenija [On the restoration of power supply during short-term voltage failures]. A.N. Shpiganovich, V.I. Zatsepina, I.G. Shilov. Promyshlennaja jenergetika, 2008, no. 10, pp. 15-17.
78. Shpiganovich A.N. Provaly naprjazhenija v vysokovol'tnyh jelektricheskih setjah [Voltage dips in high-voltage electrical networks]. A.N. Shpiganovich, I.A. Chernyh, I.G. Shilov. News of Higher Educational Institutions of the Chernozem Region, 2006, no. 1, pp. 16-19.
79. Shpiganovich A.N. Sluchajnye potoki v reshenii verojatnostnyh zadach [Random flows in the solution of probabilistic problems]. A.N. Shpiganovich, A.A. Shpiganovich, V.I. Bosh. Lipetsk, LSTU, 2003, 224 p.
Review
For citations:
Shpiganovich A.N., Shpiganovich A.A., Zatsepina V.I., Zatsepin E.P. State of the issue of the power supply system's reliability. Mining Science and Technology (Russia). 2017;(3):47-79. (In Russ.) https://doi.org/10.17073/2500-0632-2017-3-47-73