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Abstract: Landsat multispectral images have been successfully used for discovering some mineral deposits in dif-

ferent regions of the world. Some minerals, including clay minerals and iron oxide, can be detected by multispectral 

surveys due to their spectral characteristics. This paper presents the results of the application of principal compo-

nent analysis and Crosta technique for detecting accumulations of clay minerals and iron oxide based on 

a Landsat 8 Oli multispectral image of Thai Nguyen Province, north of Vietnam. The obtained results have demon-

strated the feasibility and suitability of prompt detecting mineral deposits based on the remote sensing data. The 

image processing methods and facilities tested in this study can be used to create maps of distribution of clay min-

erals and iron oxide for effective and expedient prospecting and exploration for minerals. 
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Аннотация: Многозональные изображения Landsat с успехом использовались для выявления месторожде-

ний некоторых полезных ископаемых в разных регионах мира. Некоторые минералы, в том числе глини-

стые минералы и оксид железа, могут быть обнаружены по данным многозональной съемки из-за их спек-

тральных характеристик. В данной работе представлены результаты применения метода главных компоне-

тов и технологии Crosta для обнаружения скоплений глинистых минералов и оксида железа на основе ис-

пользования многозонального изображения Landsat 8 Oli провинции Тхай Нгуен, север Вьетнама. Полу-

ченные результаты показали возможность и целесообразность оперативного определения месторождения 

полезных ископаемых по данным дистанционного зондирования. Методы и средства обработки изображе-

ний, апробированные в этом исследовании, могут использоваться для создания карт распределения глини-

стых минералов и оксида железа, с целью эффективного и рационального поиска полезных ископаемых и 

разведки минерального сырья. 
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INTRODUCTION 

Minerals are the most important natural re-

sources of any country. Mineral resources are 

used in many industries: in energy generation, 

construction, metallurgy, agriculture, etc. Pros-

pecting and discovery of mineral resources is a 

difficult task. Traditional methods based on field 

prospecting and exploratory surveying work, 

solve this problem, but bear high costs. Remote 

sensing technology has several advantages over 

ground-based reconnaissanc|exploration me-

thods, due to coverage of a wide area and short 

re-observation period. The studies [1–5, 7–10, 

13–18, 20–23] confirms the possibility of using 

multispectral images (Landsat, Aster) for moni-

toring and detecting minerals. Scanner images 

capture information about the underlying surface 

in the visible, near and middle infrared spectral 

regions [6, 11, 12]. This allows investigating 

physical properties of the studied surface and 

making assumptions about soils and rocks.  

Landsat multispectral image data have 

been used for several years in arid and semi-arid 

natural conditions to identify deposits of iron 

oxides and hydrothermal minerals. Many authors 

have used the spectral index method to detect 

minerals. For example, the spectral indices ob-

tained from Landsat and ASTER multispectral 

images were used for prospecting iron oxide, 

clay minerals, magnetite content, ferrous miner-

als and calculation of Abrams, Chica-Olma and 

Kaufmann indices [4, 10]. Crosta (1989) [5], Mia 

and Fujimitsu (2012) [16] used the principal 

component analysis (PCA) method to detect 

mineral deposits. Based on the principal compo-

nent analysis method, Fraser et al. (1997) [10] 

developed the DPCA method (directed principal 

component analysis) to monitor the distribution 

of minerals. The DPCA method was also used by 

Khaleighi and Ranjbar (2011) [14] to map cop-

per content in Iran based on ASTER multispec-

tral images. The findings obtained in these stu-

dies show that the principal component method 

has higher accuracy of mineral detection than the 

spectral index method. 

This work is devoted to the detection of 

clay minerals and iron oxides in the Thai Nguyen 

Province, northern Vietnam based on the multis-

pectral survey LANDSAT 8 data using the me-

thod of principal components. Some other image 

processing methods were also used in the work, 

including the creation of color mosaics, stret-

ching the histograms of brightness, decorrela-

tion, improving the edges of contours, merging 

images, calculating spectral indices – to estimate 

the mineral content in rocks and soils. 

MATERIALS  

The Study Area. Thai Nguyen Province is 

located in the northern part of Vietnam, 80 km 

from the Hanoi, the capital of the country (Fig. 

1). The geographic coordinates: 21°20 ′ to 22°03′ 

N, 105°52′ to 106°14′ E The Province is crossed 

by several mountain ranges, stretching in the di-

rection from the northwest to the southeast. In 

the southwest of the province, Tamdao mountain 

range of 80 km long is located. The vegetative 

cover in the Province, mainly presented by new-

ly planted forests and fruit trees, occupies about 

80% of the area. Natural forests remained in a 

small part of the territory and are common in 

high mountain ranges. Mountain soil occupies 

48.4% of the area, is located at heights of more 

than 200 m and formed as a result of weathering 

of hard and metamorphic rocks and other forma-
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tions. The soil of the hills covers 31.4 % of the 

area, is formed mainly over sandstone, siltstone 

and some ancient tectonic formations. Thai 

Nguyen Province is rich in mineral resources, 

including iron and coal. Pictures of some mineral 

mines in the study area are shown in Fig. 3 [24]. 

Initial data. In this work, we used a mul-

tispectral image received from the Landsat 8 OLI 

satellites; the survey date was June 15, 2017 

(Fig. 2). The image was produced in cloudless 

weather – a necessary condition for shooting. 

This image was downloaded from the site of the 

United States Geological Survey (US Geological 

Survey – USGS – http://glovis.usgs.gov) with 

L1T processing level [25]. 

Landsat 8 is the eighth satellite in the 

Landsat program and the seventh satellite of this 

series, launched into the Earth orbit. Landsat 8 

receives images of the Earth's surface in the visi-

ble, near-IR and thermal IR ranges, with spatial 

resolution of 15 to 100 m (Table 1). 

METHODS AND FINDINGS 

To detect iron oxides and clay minerals 

from Landsat 8 multispectral image data, the 

principal component analysis (PCA) method was 

used. This method allows to reduce the data di-

mensionality with the least loss of valuable in-

formation for decryption. 

 

Fig. 1. Location of the study area, Thai Nguyen Province, Vietnam 
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Table 1 

Characteristics of the multispectral image received from the Landsat 8 satellite 

No. Spectral channel Range (µm) Spectral resolution (m) 

1 Channel 1 – shores and aerosols 0.433–0.453  30  

2 Channel 2 – Blue 0.450–0.515  30  

3 Channel 3 – Green 0.525–0.600  30  

4 Channel 4 – Red 0.630–0.680  30  

5 Channel 5 – Near-infrared  0.845–0.885  30  

6 Channel 6 – Middle-infrared 1.560–1.660  30  

7 Channel 7 – Middle-infrared 2.100–2.300  30  

8 Channel 8 – achromatic  0.500–0.680  15  

9 Channel 9 – Cirrus 1.360–1.390  30  

10 Channel 10 – Thermal infrared 10.30–11.30  100  

11 Channel 11 – Thermal infrared  11.50–12.50  100  

Fig. 3. Pictures of some mineral mines in the study area: coal mines Han Hoa (a), 

Nui Hong (b), and Chai Kau iron ore mine (c) [24] 

Fig. 2. Landsat 8 multispectral image in Thai Nguyen province, 15.06.2017 
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In this paper, it is shown that the first prin-

cipal component (PC1) consists of the positive 

elements of all spectral channels of the Landsat 8 

image (channels 2, 3, 4, 5, 6, and 7). PC1 

amounts to about 95.12 % of the eigenvalue of 

the total variance for the PCA data. The eigen-

vector for the third principal component (PC3) 

indicates that vegetation, which has high reflec-

tivity in the near infrared range (channel 5) pre-

vails in PC3. The negative value of the element 

in channel 5 on this principal component 

(−0.77223) also indicates that the vegetation pix-

els will be black on this principal component. 

Since the elements on the eigenvectors for chan-

nel 2 and channel 4 in the sixth principal compo-

nent (PC6) (Table 2) are also opposite in sign, it 

can be assumed that the iron oxides will differ in 

bright pixels in PC6. Hydroxyl minerals are dis-

played as dark pixels in PC5 due to the fact that 

the contribution is negative from channel 6 and 

positive from channel 7 in this PC5 (Table 2). If 

the number of input channels is reduced to avoid 

a certain spectral contrast, the probability of de-

termining an unique principal component for the 

detection of minerals will increase [15]. 

Hydroxyl minerals reflect electromagnetic 

radiation in the range 1.55–1.75 μm (channel 6 

of the Landsat 8 image) much more intensively 

than in the other studied ranges, and are inten-

sively absorbed in the range from 2.05 to 2.35 

μm (channel 7) [ 7]. Thus, for the detection of 

clay minerals, spectral channels in blue (chan-

nel 2), near IR (channel 5) and mid-infrared 

ranges (channels 6 and 7) of Landsat 8 image are 

used. Channels 3 (green) and 4 (red) are not 

used, to avoid the effects of iron oxides and ve-

getation cover. The results of the conversion of 

the principal components in the combination of 

channels 2, 5, 6 and 7 of the Landsat 8 image for 

the territory of the Thai Nguyen Province Viet-

nam) are shown in Table. 3. An analysis of the 

results showed that PC4 with relatively strong 

positive load for channel 7 (0.7384) and mod-

erate negative load for channel 6 (−0.5791) can 

be used to detect hydroxyl minerals. PC4 distin-

guishes hydroxyl minerals as dark pixels. Using 

the inversion method, hydroxyl minerals are 

represented by light pixels on PC4 (Fig. 4, a). 

Table 2 

The findings of main component analysis for 6 multispectral image channels of Landsat 8 

Channel B2 B3 B4 B5 B6 B7 Eigenvalue (%) 

PC1 0.32708 0.26698 0.22964 0.38848 0.39815 0.64149 95.123 

PC2 −0.14263 0.05132 0.24151 0.03498 0.60180 0.58675 2.689 

PC3 0.22824 0.23004 0.46350 −0.77223 −0.15801 0.11465 1.935 

PC4 −0.09365 −0.38327 −0.56946 −0.42576 0.36687 0.33932 0.196 

PC5 −0.17823 0.13023 0.12403 −0.25107 −0.54775 0.06205 0.035 

PC6 −0.56011 −0.53438 0.54677 0.08179 −0.08079 0.28967 0.023 
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Table 3 

The findings of main component analysis for identifying hydroxyl minerals 

Principal 

components 

Eigen vector 
Eigenvalue (%) 

B2 B5 B6 B7 

PC1 0.3566 0.6158 0.6218 0.3270 95.481 

PC2 0.1340 0.6730 −0.4379 −0.5808 3.119 

PC3 −0.9072 0.2833 0.2935 −0.1024 1.310 

PC4 −0.1783 0.2959 −0.5791 0.7384 0.090 

 

Table 4 

The findings of main component analysis for identifying clay minerals 

Principal 

components 

Eigen vector 
Eigenvalue (%) 

B2 B4 B5 B6 

PC1 0.3680 0.2381 0.6351 0.6360 95.775 

PC2 0.0992 0.4337 −0.7340 0.5132 2.410 

PC3 −0.7739 −0.3509 0.0548 0.5244 1.724 

PC4 0.5058 −0.7951 −0.2343 0.2389 0.091 

 

 
 

Fig. 4. Component PC4, bright pixels indicate the location of hydroxyl minerals (a) and iron oxides (b) 

 

  

а) b) 
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Similarly, for the detection of iron oxides, 

the spectral channels 2, 4, 5, and 6 of the Landsat 

8 image are used in this study. The green channel 

(channel 3) is not used to avoid the effect of ve-

getation on the results of the detection of miner-

als. The results of the conversion of the principal 

components in the combination of channels 2, 4, 

5, and 6 of the Landsat 8 image in the Thai 

Nguyen Province (Vietnam) are shown in Table. 

4. In this case, PC4 pinpoints iron oxide as dark 

pixels (the eigenvector for channel 4 is −0.7951 

and for channel 2, +0.5058). This image (PC4) 

can be inverted by brightness (brightness in-

verse) to show the location of iron oxides as 

bright pixels (Fig. 4, b). 

Images of the principal components (PC4) 

for hydroxyl minerals and iron oxides are com-

bined to create a single image displaying pixels 

with abnormal concentrations of both hydroxyls 

and oxides of iron as the brightest. This merger 

of two images is also obtained using the method 

of principal components, such as PC1, having 

positive eigenvalues for both input images. 

These images were then combined using Crosta 

technology to produce the three-layer image. The 

flowchart of the image processing method for 

detecting hydroxyl minerals and iron oxides 

from the LANDSAT 8 multispectral image data 

is shown in Fig. 5. 

To process multispectral images, the RS-

MINERALS software package was created 

based on the Matlab programming language. The 

package is intended for the analysis of satellite 

images by the principal component analysis me-

thod. The RS-MINERALS software package 

provides the ability to open and process satellite 

images in TIFF format, including basic modules 

such as View (imagery), Idicies (spectral indic-

es), PCA (principal component analysis), DPCA 

(directed PCA), Interpreter (image processing ). 

The software program interface is presented in 

Fig. 6. 

 

Fig. 5. Image processing method for detection of hydroxyl minerals and iron oxide using a Landsat 8 Oli 

multispectral image 

 

Landsat 8 OLI multispectral image 

Pre-processing 

B2 B5 B6 B7 B2 B4 B5 B6 

Principal component analysis Principal component analysis 

PC4 PC4 PC1 

Image combination 

Result: detection of minerals 
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Fig. 6. RS-MINERALS software program interface 

 
 а б 

Fig. 7. PCA (a) and Indices (b) modules in the RS-MINERALS software package 

The PCA module allows calculating the 

principal components for Landsat images. At the 

output, the program displays eigenvectors and 

eigenvalues for the selected principal compo-

nents containing the most valuable information 

about minerals (Fig. 7, a). 

The Indices module allows calculating 

mineral indices such as those for clay minerals, 

iron oxide, ferrous minerals, mineral composites, 

Abramm index, Kaufmann index and Chica-

Olma index (Fig. 7, b). 

The Interpreter module has tools for com-

bining the spectral channels of a multispectral 

image (Band combinations) and Brightness in-

version. The Brightness inversion tool allows 

inverting the brightness of pixels to highlight the 

location of minerals in the image of the principal 

component. 

The DPCA module allows highlighting the 

location of minerals using the DPCA method de-

scribed by Fraser and Green (1987). In this me-

thod, PC1 is calculated from the ratios of the 

Landsat TM spectral channels: (chan-

nel 4/channel 3) and (channel 5/channel 7). The 

image (channel 5/channel 4) and the image 

(channel 7 + channel 1) were used to create the 

color RGB image. 

The result of the combination of the im-

ages for the detection of hydroxyl minerals and 

iron oxide was shown in Fig. 8. In this image, 

white pixels represent areas rich in both hydrox-

yl and iron minerals. The areas containing many 

hydroxyl minerals are shown by bright red to 

orange color, and the areas rich in iron are shown 

in bright blue to blue color [15]. 

To assess the accuracy of the detection of 

hydroxyl minerals and iron oxide from Landsat 8 

multispectral survey data, we used the mineral 

map of Thai Nguyen Province, Vietnam, at a 

scale of 1:200,000 (Fig. 9). The obtained results 

showed that iron minerals are distributed over 

most of the Thai Nguyen Province. The location 

of large iron ore mines such as Trai Cau, Hoa 

Trung, Linh Nham, Thanh Chu, Tien Bo is clear-

ly displayed in the image after color combination 

with the use of Crosta technology. The results 

also showed that hydroxyl minerals are concen-

trated in the areas where large coal mines are 

located, such as Nui Hong, Khanh Hoa, Phan Me 

(see Fig. 8). 
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Fig. 8. Crosta-based image combination 

 

 

 
 

 

Fig. 9. Map of minerals of Thai Nguyen province (Vietnam), scale 1 : 200.000 
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CONCLUSIONS 

LANDSAT 8 multispectral images can be 

effectively used to detect and forecast the hy-

droxyl mineral and iron oxide deposits. The me-

thod of the principal component analysis is ca-

pable to detect minerals with greater reliability 

due to the elimination of duplicate information in 

the spectral channels. In this study, hydroxyl 

minerals and iron oxide were detected in rocks, 

as well as in open soils in the vicinity of mining 

enterprises. Rock emissions around mines are 

very well decrypted on images of the principal 

components based on Crosta technology. In the 

Thai Nguyen Province, in the territory with 

sparse vegetation, hydroxyl minerals and iron 

oxide can also be detected based on decryption 

of hard rock and arenacaous formations. The 

findings obtained in this study can be used to 

create and update a map of minerals distribution 

for forecasting new concentrations of mineral 

raw materials. 
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