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Abstract: Landsat multispectral images have been successfully used for discovering some mineral deposits in dif-
ferent regions of the world. Some minerals, including clay minerals and iron oxide, can be detected by multispectral
surveys due to their spectral characteristics. This paper presents the results of the application of principal compo-
nent analysis and Crosta technique for detecting accumulations of clay minerals and iron oxide based on
a Landsat 8 Oli multispectral image of Thai Nguyen Province, north of Vietnam. The obtained results have demon-
strated the feasibility and suitability of prompt detecting mineral deposits based on the remote sensing data. The
image processing methods and facilities tested in this study can be used to create maps of distribution of clay min-
erals and iron oxide for effective and expedient prospecting and exploration for minerals.
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(Ha npumepe Treppuropun nposuHunu Txai Hryen, Boernam)
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AnHOTanus: MHOTO30HAIBHBIE H300paxeHus Landsat ¢ ycriexoM HCMOIb30BAIKCH TS BBISIBICHUS MECTOPOIK/IC-
HHUI HEKOTOPBIX MOJIC3HBIX MCKOMAEMBIX B Pa3HBIX PErHMOHax Mupa. HekoTopble MUHEpasbl, B TOM YHCIC TIIHHU-
CTBIE MHUHEPAJIBI U OKCHI XKeJle3a, MOTYT ObITh OOHAPYKEHBI 0 JAHHBIM MHOTO30HAIBHONW ChEMKH M3-3a WX CIIEK-
TPATBHBIX XapaKTePUCTUK. B naHHOM paboTe MpeacTaBieHbl pe3yIbTaThl MPUMEHEHUS METO/A TIIABHBIX KOMITOHE-
ToB U TexHosoruu Crosta yiss OOHAPYKEHUS CKOTUICHUH TIIMHUCTBIX MUHEPAIOB U OKCHJIA JKelie3a Ha OCHOBE HC-
MOJIb30BaHUS. MHOTO30HAABHOTO m300paxkenns Landsat 8 Oli mposunnuu Txaii Hryen, ceBep Brernama. ITomy-
YEeHHBIC Pe3yJIbTAThl MOKA3aJIM BO3MOXHOCTh M I1EJIECO00PA3HOCTh ONEPATUBHOIO OMPEIS/ICHUSI MECTOPOKICHHS
MOJIC3HBIX MCKOTAEMBIX 0 JAHHBIM JUCTAHIIMOHHOTO 30HANPOBaHUs. MeTO/IbI U cpeicTBa 00PabOTKH H300paxkKe-
HUA, arpoOMpPOBaHHbBIE B 3TOM HCCIIEIOBAHWH, MOTYT MCITOJIB30BATHCS IS CO3/IaHMs KapT pacrpenesieHus TIINHHU-
CTBIX MHHEPAJIOB M OKCHA JKejie3a, C Ielbio 3()()EKTHBHOTO W PAIlMOHAIBHOTO TIOMCKA MMOJE3HBIX UCKOMAEMBIX U
pa3BeIKK MUHEPATHHOTO ChIPhSI.

KiaioueBnble ciioBa: JAUCTAHIITMOHHOC 30HAUPOBAHUC, MCTO INIAaBHBIX KOMIIOHCTOB, MUHCPAJI, Landsat, Vietnam.

Jonsa murupoBanus: Ynne Jle Xynr, 3abmonkuit B. P. MeTonnka oOHapyXeHHS TIIMHACTHIX MUHEPAJIOB U OKCHJIA
JKenesa Mo JaHHBIM MHOI'030HaIbHBIX M300pakeHui Landsat (Ha mpumMepe TeppuTopur npoBuHimu Txai Hryew,
BoetHam). Iopusie nayku u mexnonocuu. 2019;4(1):65-75. DOI: 10.17073/2500-0632-2019-1-65-75.
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INTRODUCTION

Minerals are the most important natural re-
sources of any country. Mineral resources are
used in many industries: in energy generation,
construction, metallurgy, agriculture, etc. Pros-
pecting and discovery of mineral resources is a
difficult task. Traditional methods based on field
prospecting and exploratory surveying work,
solve this problem, but bear high costs. Remote
sensing technology has several advantages over
ground-based  reconnaissanclexploration me-
thods, due to coverage of a wide area and short
re-observation period. The studies [1-5, 7-10,
13-18, 20-23] confirms the possibility of using
multispectral images (Landsat, Aster) for moni-
toring and detecting minerals. Scanner images
capture information about the underlying surface
in the visible, near and middle infrared spectral
regions [6, 11, 12]. This allows investigating
physical properties of the studied surface and
making assumptions about soils and rocks.

Landsat multispectral image data have
been used for several years in arid and semi-arid
natural conditions to identify deposits of iron
oxides and hydrothermal minerals. Many authors
have used the spectral index method to detect
minerals. For example, the spectral indices ob-
tained from Landsat and ASTER multispectral
images were used for prospecting iron oxide,
clay minerals, magnetite content, ferrous miner-
als and calculation of Abrams, Chica-Olma and
Kaufmann indices [4, 10]. Crosta (1989) [5], Mia
and Fujimitsu (2012) [16] used the principal
component analysis (PCA) method to detect
mineral deposits. Based on the principal compo-
nent analysis method, Fraser et al. (1997) [10]
developed the DPCA method (directed principal
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component analysis) to monitor the distribution
of minerals. The DPCA method was also used by
Khaleighi and Ranjbar (2011) [14] to map cop-
per content in Iran based on ASTER multispec-
tral images. The findings obtained in these stu-
dies show that the principal component method
has higher accuracy of mineral detection than the
spectral index method.

This work is devoted to the detection of
clay minerals and iron oxides in the Thai Nguyen
Province, northern Vietnam based on the multis-
pectral survey LANDSAT 8 data using the me-
thod of principal components. Some other image
processing methods were also used in the work,
including the creation of color mosaics, stret-
ching the histograms of brightness, decorrela-
tion, improving the edges of contours, merging
images, calculating spectral indices — to estimate
the mineral content in rocks and soils.

MATERIALS

The Study Area. Thai Nguyen Province is
located in the northern part of Vietnam, 80 km
from the Hanoi, the capital of the country (Fig.
1). The geographic coordinates: 21°20 ' to 22°03’
N, 105°52' to 106°14’ E The Province is crossed
by several mountain ranges, stretching in the di-
rection from the northwest to the southeast. In
the southwest of the province, Tamdao mountain
range of 80 km long is located. The vegetative
cover in the Province, mainly presented by new-
ly planted forests and fruit trees, occupies about
80% of the area. Natural forests remained in a
small part of the territory and are common in
high mountain ranges. Mountain soil occupies
48.4% of the area, is located at heights of more
than 200 m and formed as a result of weathering
of hard and metamorphic rocks and other forma-
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tions. The soil of the hills covers 31.4 % of the
area, is formed mainly over sandstone, siltstone
and some ancient tectonic formations. Thai
Nguyen Province is rich in mineral resources,
including iron and coal. Pictures of some mineral
mines in the study area are shown in Fig. 3 [24].

Initial data. In this work, we used a mul-
tispectral image received from the Landsat 8 OLI
satellites; the survey date was June 15, 2017
(Fig. 2). The image was produced in cloudless
weather — a necessary condition for shooting.
This image was downloaded from the site of the
United States Geological Survey (US Geological
Survey — USGS - http://glovis.usgs.gov) with
L1T processing level [25].

Landsat 8 is the eighth satellite in the
Landsat program and the seventh satellite of this
series, launched into the Earth orbit. Landsat 8
receives images of the Earth's surface in the visi-
ble, near-IR and thermal IR ranges, with spatial
resolution of 15 to 100 m (Table 1).

METHODS AND FINDINGS

To detect iron oxides and clay minerals
from Landsat 8 multispectral image data, the
principal component analysis (PCA) method was
used. This method allows to reduce the data di-
mensionality with the least loss of valuable in-
formation for decryption.
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Fig. 1. Location of the study area, Thai Nguyen Province, Vietnam
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Fig. 3. Pictures of some mineral mines in the study area: coal mines Han Hoa (a),
Nui Hong (b), and Chai Kau iron ore mine (c) [24]

Table 1
Characteristics of the multispectral image received from the Landsat 8 satellite
No. Spectral channel Range (pum) Spectral resolution (m)
1 Channel 1 — shores and aerosols 0.433-0.453 30
2 Channel 2 — Blue 0.450-0.515 30
3 Channel 3 — Green 0.525-0.600 30
4 Channel 4 — Red 0.630-0.680 30
5 Channel 5 — Near-infrared 0.845-0.885 30
6 Channel 6 — Middle-infrared 1.560-1.660 30
7 Channel 7 — Middle-infrared 2.100-2.300 30
8 Channel 8 — achromatic 0.500-0.680 15
9 Channel 9 — Cirrus 1.360-1.390 30
10 | Channel 10 — Thermal infrared 10.30-11.30 100
11 | Channel 11 — Thermal infrared 11.50-12.50 100
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In this paper, it is shown that the first prin-
cipal component (PC1) consists of the positive
elements of all spectral channels of the Landsat 8
image (channels 2, 3, 4, 5, 6, and 7). PC1
amounts to about 95.12 % of the eigenvalue of
the total variance for the PCA data. The eigen-
vector for the third principal component (PC3)
indicates that vegetation, which has high reflec-
tivity in the near infrared range (channel 5) pre-
vails in PC3. The negative value of the element
in channel 5 on this principal component
(—0.77223) also indicates that the vegetation pix-
els will be black on this principal component.
Since the elements on the eigenvectors for chan-
nel 2 and channel 4 in the sixth principal compo-
nent (PC6) (Table 2) are also opposite in sign, it
can be assumed that the iron oxides will differ in
bright pixels in PC6. Hydroxyl minerals are dis-
played as dark pixels in PC5 due to the fact that
the contribution is negative from channel 6 and
positive from channel 7 in this PC5 (Table 2). If
the number of input channels is reduced to avoid
a certain spectral contrast, the probability of de-
termining an unique principal component for the
detection of minerals will increase [15].

Hydroxyl minerals reflect electromagnetic
radiation in the range 1.55-1.75 pum (channel 6
of the Landsat 8 image) much more intensively
than in the other studied ranges, and are inten-
sively absorbed in the range from 2.05 to 2.35
um (channel 7) [ 7]. Thus, for the detection of
clay minerals, spectral channels in blue (chan-
nel 2), near IR (channel 5) and mid-infrared
ranges (channels 6 and 7) of Landsat 8 image are
used. Channels 3 (green) and 4 (red) are not
used, to avoid the effects of iron oxides and ve-
getation cover. The results of the conversion of
the principal components in the combination of
channels 2, 5, 6 and 7 of the Landsat 8 image for
the territory of the Thai Nguyen Province Viet-
nam) are shown in Table. 3. An analysis of the
results showed that PC4 with relatively strong
positive load for channel 7 (0.7384) and mod-
erate negative load for channel 6 (—0.5791) can
be used to detect hydroxyl minerals. PC4 distin-
guishes hydroxyl minerals as dark pixels. Using
the inversion method, hydroxyl minerals are
represented by light pixels on PC4 (Fig. 4, a).

Table 2

The findings of main component analysis for 6 multispectral image channels of Landsat 8

Channel B2 B3 B4 B5 B6 B7 Eigenvalue (%)
PC1 0.32708 0.26698 0.22964 0.38848 0.39815 0.64149 95.123
PC2 —0.14263 0.05132 0.24151 0.03498 0.60180 0.58675 2.689
PC3 0.22824 0.23004 0.46350 —0.77223 —0.15801 0.11465 1.935
PC4 —0.09365 —0.38327 —0.56946 —0.42576 0.36687 0.33932 0.196
PC5 —0.17823 0.13023 0.12403 —0.25107 —0.54775 0.06205 0.035
PC6 —0.56011 —0.53438 0.54677 0.08179 —0.08079 0.28967 0.023
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The findings of main component analysis for identifying hydroxyl minerals

Table 3

Ccljn:i;g:]p;z[[s - - Eigen vector - - Eigenvalue (%)
PC1 0.3566 0.6158 0.6218 0.3270 95.481
PC2 0.1340 0.6730 -0.4379 -0.5808 3.119
PC3 —-0.9072 0.2833 0.2935 -0.1024 1.310
PC4 -0.1783 0.2959 -0.5791 0.7384 0.090

Table 4
The findings of main component analysis for identifying clay minerals

inci Eigen vector

coPn:I;grlmr(:?]Its B2 BZ J BS B6 Eigenvalue (%0)
PC1 0.3680 0.2381 0.6351 0.6360 95.775
PC2 0.0992 0.4337 —0.7340 0.5132 2.410
PC3 —0.7739 —0.3509 0.0548 0.5244 1.724
PC4 0.5058 -0.7951 -0.2343 0.2389 0.091

Fig. 4. Component PC4, bright pixels indicate the location of hydroxyl minerals (a) and iron oxides (b)
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Similarly, for the detection of iron oxides,
the spectral channels 2, 4, 5, and 6 of the Landsat
8 image are used in this study. The green channel
(channel 3) is not used to avoid the effect of ve-
getation on the results of the detection of miner-
als. The results of the conversion of the principal
components in the combination of channels 2, 4,
5, and 6 of the Landsat 8 image in the Thai
Nguyen Province (Vietnam) are shown in Table.
4. In this case, PC4 pinpoints iron oxide as dark
pixels (the eigenvector for channel 4 is —0.7951
and for channel 2, +0.5058). This image (PC4)
can be inverted by brightness (brightness in-
verse) to show the location of iron oxides as
bright pixels (Fig. 4, b).

Images of the principal components (PC4)
for hydroxyl minerals and iron oxides are com-
bined to create a single image displaying pixels
with abnormal concentrations of both hydroxyls
and oxides of iron as the brightest. This merger
of two images is also obtained using the method

of principal components, such as PC1, having
positive eigenvalues for both input images.
These images were then combined using Crosta
technology to produce the three-layer image. The
flowchart of the image processing method for
detecting hydroxyl minerals and iron oxides
from the LANDSAT 8 multispectral image data
is shown in Fig. 5.

To process multispectral images, the RS-
MINERALS software package was created
based on the Matlab programming language. The
package is intended for the analysis of satellite
images by the principal component analysis me-
thod. The RS-MINERALS software package
provides the ability to open and process satellite
images in TIFF format, including basic modules
such as View (imagery), Idicies (spectral indic-
es), PCA (principal component analysis), DPCA
(directed PCA), Interpreter (image processing ).
The software program interface is presented in
Fig. 6.

Landsat 8 OLI multispectral image

i

Pre-processing

1 1
1
1 1
I B2 B5 B6 B7 :. B2 B4 B5 B6
1 1
1
L e v _________ L= V _________
Principal component analysis Principal component analysis
A Y
PC4 > pPc1 e PC4

\

Y

Image combination

A

Y

Result: detection of minerals

Fig. 5. Image processing method for detection of hydroxyl minerals and iron oxide using a Landsat 8 Oli
multispectral image
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Fig. 7. PCA (a) and Indices (b) modules in the RS-MINERALS software package

The PCA module allows calculating the
principal components for Landsat images. At the
output, the program displays eigenvectors and
eigenvalues for the selected principal compo-
nents containing the most valuable information
about minerals (Fig. 7, a).

The Indices module allows calculating
mineral indices such as those for clay minerals,
iron oxide, ferrous minerals, mineral composites,
Abramm index, Kaufmann index and Chica-
Olma index (Fig. 7, b).

The Interpreter module has tools for com-
bining the spectral channels of a multispectral
image (Band combinations) and Brightness in-
version. The Brightness inversion tool allows
inverting the brightness of pixels to highlight the
location of minerals in the image of the principal
component.

The DPCA module allows highlighting the
location of minerals using the DPCA method de-
scribed by Fraser and Green (1987). In this me-
thod, PC1 is calculated from the ratios of the
Landsat TM  spectral channels: (chan-
nel 4/channel 3) and (channel 5/channel 7). The
image (channel 5/channel 4) and the image
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(channel 7 + channel 1) were used to create the
color RGB image.

The result of the combination of the im-
ages for the detection of hydroxyl minerals and
iron oxide was shown in Fig. 8. In this image,
white pixels represent areas rich in both hydrox-
yl and iron minerals. The areas containing many
hydroxyl minerals are shown by bright red to
orange color, and the areas rich in iron are shown
in bright blue to blue color [15].

To assess the accuracy of the detection of
hydroxyl minerals and iron oxide from Landsat 8
multispectral survey data, we used the mineral
map of Thai Nguyen Province, Vietnam, at a
scale of 1:200,000 (Fig. 9). The obtained results
showed that iron minerals are distributed over
most of the Thai Nguyen Province. The location
of large iron ore mines such as Trai Cau, Hoa
Trung, Linh Nham, Thanh Chu, Tien Bo is clear-
ly displayed in the image after color combination
with the use of Crosta technology. The results
also showed that hydroxyl minerals are concen-
trated in the areas where large coal mines are
located, such as Nui Hong, Khanh Hoa, Phan Me
(see Fig. 8).
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Nham, Thanh Chu,

Nui Hong
Tien Bo iron mines

coal mine

4 Khanh Hoa
¥ and Phan Me { Trai Cau iron |
coal mines mine

Fig. 8. Crosta-based image combination
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Fig. 9. Map of minerals of Thai Nguyen province (Vietnam), scale 1 : 200.000

MINERAL DEPOSIT GEOLOGY




MINING SCIENCE
AND VOL. 4, N2 1 (2019) MISIS

FOPHbIE HAYKW U TEXHOJIOr KA

National University of
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CONCLUSIONS

LANDSAT 8 multispectral images can be
effectively used to detect and forecast the hy-
droxyl mineral and iron oxide deposits. The me-
thod of the principal component analysis is ca-
pable to detect minerals with greater reliability
due to the elimination of duplicate information in
the spectral channels. In this study, hydroxyl
minerals and iron oxide were detected in rocks,
as well as in open soils in the vicinity of mining
enterprises. Rock emissions around mines are
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for forecasting new concentrations of mineral
raw materials.
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