Preview

Mining Science and Technology (Russia)

Advanced search

A systematic approach to the peat machines and equipment classification development

https://doi.org/10.17073/2500-0632-2022-06-06

Abstract

The «National Security Strategy of the Russian Federation until 2030» prioritises the use of resource-saving and waste-free technologies for natural resource extraction and processing, import substitution of mining equipment in the Russian mining sector, and the introduction of digital technologies at all stages of resource extraction and processing in the mining industry to improve their safety. The aim of the article is to study the gradual development of peat machinery classification and the relevance of its improvement through integrated mechanization devices to create waste-free extraction and processing of peat deposits using fullcycle mobile complexes with the development of environmentally friendly and resource-saving technologies for peat production. The methodological basis of the research includes post-event analysis, peat machine design theory, and systems analysis. As a research result, new system factors influencing the development of the classification of currently available machinery and equipment for peat production, as well as classification variants combining the processes of extraction and processing of peat deposit resources are provided, which allow modeling the structure of full-cycle mobile complexes for extraction and processing of peat deposit resources without waste. In terms of practical application, the classification of peat machinery enables the development of a rational decision-making data system for optimizing the structure of the technological machinery and equipment fleet of peat extraction enterprises, taking into account the deteriorating conditions of peat resources and development technologies, the economic conditions of the industry and the current trends of digitalization in the extractive industry.

About the Authors

B. F. Zyuzin
Tver State Technical University
Russian Federation

Boris F. Zyuzin – Dr. Sci. (Eng.), Professor, Vice-Rector for International Relations, Head of the Department of Peat Machinery and Equipment

ScopusID 55921005500

Tver



T.  B.  Yakonovskaya
Tver State Technical University
Russian Federation

Tatiana B. Yakonovskaya – Cand. Sci. (Econ.), Associate Professor, Department of Economics and Production Management

ScopusID 57196258982

Tver



A. I. Zhigulskaya
Tver State Technical University
Russian Federation

Alexandra I. Zhigulskaya – Cand. Sci. (Eng.), Associate Professor, Department of Peat Machinery and Equipment

ScopusID 57196259021

Tver



References

1. Markov V. I. Periods of peat industry of Russia. Trudy Instorfa. 2011;(6):10–21. (In Russ.)

2. Zyuzin B. F., Yakonovskaya T. B., Zhigul’skaya A. I. et al. Current trends in retrofit installation in view of advance in peat digging. Mining informational and analytical bulletin. 2015;(6):67–73. (In Russ.) URL: https://giab-online.ru/files/Data/2015/06/67-73.pdf

3. Iakupov D. R., Ivanov S. L., Ivanova P. V., Permyakova E. K. Classification of peat extraction methods and means of their implementation. Mining informational and analytical bulletin. 2020;(S34):3–11. (In Russ.) https://doi.org/10.25018/0236-1493-2020-10-34-3-11

4. Zhigulskaya A. I., Yakonovskaya T. B. Economic and engineering aspects of new equipment and technology for integrated non-waste extraction and processing of peat deposits. Moscow; 2013. 160 p. Deposited in the Publ. House of the Moscow State University for the Humanities on January 30, 2013, No. 953/04-13. (In Russ.)

5. Zyuzin B., Zhigulskaya A., Yakonovskaya T. et al. Machines and equipment for the development of peat deposits as a class of mining machines for open cast mining. In: Lagunova Yu. A. (ed.) Technological Equipment for the Mining and Oil and Gas Industry. Collection of Proceedings of the XVIII International Scientific and Technical Conference “Readings in Memory of V. R. Kubachek”. Yekaterinburg, 02–03 April 2020. Yekaterinburg: Ural State Mining University; 2020. Pp. 36–39. (In Russ.)

6. Opeyko F. A. Peat machines. Minsk: Vysshaya Shkola Publ. House; 1968. 408 p. (In Russ.)

7. Solopov S. G., Gortsakalyan L. O., Samsonov L. N. Peat machines and complexes. Moscow: Nedra Publ. House; 1972. 392 p. (In Russ.)

8. Solopov S. G., Gortsakalyan L. O., Samsonov L. N., Tsvetkov V. I. Peat machines and complexes. 2nd ed. Moscow: Nedra Publ. House; 1981. 416 p. (In Russ.)

9. Gorfin O. S. Machines and equipment for peat processing. Moscow: Nedra Publ. House; 1990. 318 p.

10. Kopenkina L. V., Kopenkin V. D. Peat machines as a class of mining machines. Mining Informational and Analytical Bulletin. 2002;(5). (In Russ.)

11. Ozdogan M., Makin I. Wheel bulldozers and their usage at quarries, mines and construction sites. Ankara: Danışmanlık Ltd;2020.

12. Weaver B. Bulldozer types, parts and their uses. 2019. URL: https://www.bigrentz.com/blog/bulldozer-types

13. Ozdogan M., Makin I. Hidrolikters-kepçeninkazikuvvetleri (çolakkepçe). Iş Makinalari Mühendisleri Birliği Derneği Journal. 2020;(69):22–28. (In Turkish). URL: https://www.ismakinalari.org.tr/uploads/files/610bacc8d1d55.pdf

14. Lee Y.-S., Kim S.-H., Seo J. et al. Blade control in Cartesian space for leveling work by bulldozer. Automation in Construction. 2020;118:103264. https://doi.org/10.1016/j.autcon.2020.103264

15. Ha Q. P., Yen L., Balaguer C. Robotic autonomous systems for earthmoving in military applications. Automation in Construction. 2019;107:102934. https://doi.org/10.1016/j.autcon.2019.102934

16. Mehari Z. T., Thomas R. W., Zamir S., Robert L. S. Modeling soil-bulldozer blade interaction using the discrete element method (DEM). Journal of Terramechanics. 2020;88:41–52. https://doi.org/10.1016/j.jterra.2019.12.003

17. Hirayama М., Guivant J., Katupitiya J., Whitty М. Path planning for autonomous bulldozers. Mechatronics. 2019;58:20–38. https://doi.org/10.1016/j.mechatronics.2019.01.001

18. Kai R. Bulldozer politics», state-making and (neo-)extractive industries in Tanzania’s gold mining sector. The Extractive Industries and Society. 2019;6(2):407–412. https://doi.org/10.1016/j.exis.2018.10.012

19. Qinsen Y., Shuren S. A soil-tool interaction model for bulldozer blades. Journal of Terramechanics. 1994;31(2):55–65. https://doi.org/10.1016/0022-4898(94)90007-8

20. Pinard M. A., Barker M. G., Tay J. Soil disturbance and post-logging forest recovery on bulldozer paths in Sabah, Malaysia. Forest Ecology and Management. 2000;130(1–3):213–225. https://doi.org/10.1016/S0378-1127(99)00192-9

21. Bansah K. J., Dumakor-Dupey N. K., Kansake B. A., et al.Socioeconomic and environmental assessment of informal artisanal and small-scale mining in Ghana. Journal of Cleaner Production. 2018;202:465–475. https://doi.org/10.1016/j.jclepro.2018.08.150

22. Do T. C., Dang T. D. et al. Developments in energy regeneration technologies for hydraulic excavators: a review. Renewable and Sustainable Energy Reviews. 2021;145:111076. https://doi.org/10.1016/j.rser.2021.111076

23. Slesarev B. V., Merzliakov V. G. Progress and features of operation powerful mining excavators on open pits. Mining Informational and Analytical Bulletin. 2017;(S38):13–22. (In Russ.) https://doi.org/10.25018/0236-1493-2017-12-38-13-22

24. Snetkov D. S., Kosolapov A. I. Justification of mobile handling equipment for the development of brown coal deposits in the quality management regime. Mining Informational and Analytical Bulletin. 2017;(S38):193–198. (In Russ.) https://doi.org/10.25018/0236-1493-2017-12-38-193-198

25. Argimbaev K. R., Ligotsky D. N., Loginov E. V. Bulldozer-based technology for open pit mining of limestone–dolomite deposits. Mining Informational and Analytical Bulletin. 2020;(3):16–29. (In Russ.) https://doi.org/10.25018/0236-1493-2020-3-0-16-29

26. Trubetskoy K. N., Rylnikova M. V., Vladimirov D. Ya., Pytalev I. A. Provisions and prospects for introduction of robotic geotechnologies in open pit mining Information about authors. Gornyi Zhurnal. 2017;(11):60–64. (In Russ.) https://doi.org/10.17580/gzh.2017.11.11

27. Rylnikova M. V., Vladimirov D. Ya., Pytalev I. A., Popova T. M. Robotic geotechnologies as a way to increase the efficiency and ecologization of subsoil development. Fiziko-Texhnicheskiye Problemy Razrabbotki Poleznykh Iskopaemykh. 2017;(1):92–101. (In Russ.) URL: https://www.sibran.ru/upload/iblock/1b5/1b54bd8619dc4334ccc52cd877c5be70.pdf

28. Gavrishev S. E., Pytalev I. A., Gaponova I. V., Yakshina V. V. Approach to assessing the impact of the transition to robotic geotechnology in the complex development of subsoil. In: Modern Achievements of University Scientific Schools. Collection of Reports of the National Scientific School-Conference. Magnitogorsk, November 19–20, 2020. Magnitogorsk: Nosov Magnitogorsk State Technical University; 2020. Pp. 154–158. (In Russ.)

29. Plakitkin Yu. A., Plakitkina L. S. Programs Industry-4.0 and Digital Economy of the Russian Federation – opportunities and horizons in the coal sector. Russian Mining Industry. 2018;(1):22–28. (In Russ.) https://doi.org/10.30686/1609-9192-2018-1-137-22-28


Review

For citations:


Zyuzin B.F., Yakonovskaya T.B., Zhigulskaya A.I. A systematic approach to the peat machines and equipment classification development. Mining Science and Technology (Russia). 2022;7(4):320–329. https://doi.org/10.17073/2500-0632-2022-06-06

Views: 808


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0632 (Online)