Preview

Mining Science and Technology (Russia)

Advanced search

Dolomite type nephrite processing wastes and their application

https://doi.org/10.17073/2500-0632-2023-01-75

Abstract

The demand for ornamental stone material has led to an increase in the amount of rock mass being processed. However, the production of lapidary works and jewelry result in a significant amount of waste. This study aims to investigate the material composition and physical and mechanical properties of the solid wastes generated during the processing of dolomite type nephrite in the Vitim region. The accumulation of such waste leads to increased costs of transportation, storage, security, and negative environmental impact. The majority of dolomite type nephrite deposits are located in the Northwest, Northeast, and South of China, in South Korea, Australia, Italy, and Poland, with a large deposit in the Vitim region of Russia. In this study, the waste from the Kavoktinsky deposit, the most productive in Russian, was used. A visual and petrographic examination of nephrite, skarn and amphibolite which are components of the solid waste, was conducted. The macro- and microchemical composition of nephrite of different colors was studied, and X-ray phase analysis was performed. The decorative properties of the waste were determined. A radiation and hygienic certificate was obtained. The waste has a crushability grade of 1200, abrasion grade of I1, and frost resistance of F400. The study has shown that the waste does not contain grains of incompetent rocks, clay, dust, and clay particles. The solid waste form the Vitim nephrite processing is of high quality and meets the requirements of GOST 8267-93, except for an increased content of flagstone (flattened) and large size fragments. It can be used for the production of ordinary, decorative, and mosaic concrete, decorative plates, interior decoration of premises, bathrooms, and saunas, and the manufacture of souvenir products. However, further research is needed to investigate the application of the waste as a raw material for stone casting and a slow-release fertilizer. The utilization of this waste not only solves the problem of waste disposal but also improves economic performance of mineral extraction.

About the Authors

E. V. Kislov
Dobretsov Geological Institute of Siberian Branch of the Russian Academy of Sciences (GIN SB RAS)
Russian Federation

Evgeniy V. Kislov – Cand. Sci. (Geol. and Min.), Associate Professor, Leading Researcher

Ulan-Ude



L. I. Khudyakova
Baikal Institute of Nature Management of Siberian Branch of the Russian Academy of Sciences (BIP SB RAS)
Russian Federation

Liudmila I. Khudyakova – Dr. Sci. (Eng.), Leading Researcher

Ulan-Ude



A. G. Nikolaev
Kazan (Privolzhsky) Federal University (KFU)
Russian Federation

Anatoly G. Nikolaev – Cand. Sci. (Geol. and Min.), Associate Professor

ResearcherID F-7024-2017

Kazan



References

1. Emmanuel A. Y., Jerry C. S., Dzigbodi D. A. Review of environmental and health impacts of mining in Ghana. Journal of Health and Pollution. 2018;8(17):43–52. https://doi.org/10.5696/2156-9614-8.17.43

2. Jain M. K., Das A. Impact of mine waste leachates on aquatic environment: A review. Current Pollution Reports. 2017;3(1):31–37. https://doi.org/10.1007/s40726-017-0050-z

3. Wellen C., Shatilla N. J., Carey S. K. The influence of mining on hydrology and solute transport in the Elk Valley, British Columbia, Canada. Environmental Research Letters. 2018;13(7):074012. https://doi.org/10.1088/1748-9326/aaca9d

4. Strzałkowski P. Characteristics of waste generated in dimension stone processing. Energies. 2021;14(21):7232. https://doi.org/10.3390/en14217232

5. Medina G., Sáez del Bosque I. F., Frías M., et al. Mineralogical study of granite waste in a pozzolan/Ca(OH)2 system: Influence of the activation process. Applied Clay Science. 2017;135:362–371. https://doi.org/10.1016/j.clay.2016.10.018

6. Prošek Z., Nezerka V., Tesárek P. Enhancing cementitious pastes with waste marble sludge. Construction and Building Materials. 2020;255:119372. https://doi.org/10.1016/j.conbuildmat.2020.119372

7. Wang T., Yang W., Zhang J. Experimental studies on mechanical properties and microscopic mechanism of marble waste powder cement cementitious materials. Crystals. 2022;12(6):868. https://doi.org/10.3390/cryst12060868

8. Ahmed A., Abbas S., Abbass W., et al. Potential of waste marble sludge for repressing alkali-silica reaction in concrete with reactive aggregates. Materials. 2022;15(11):3962. https://doi.org/10.3390/ma15113962

9. Moreira P. I., de Oliveira Dias J., de Castro Xavier G., et al. Ornamental stone processing waste incorporated in the production of mortars: Technological influence and environmental performance analysis. Sustainability. 2022;14(10):5904. https://doi.org/10.3390/su14105904

10. Gadioli M. C. B., Ponciano V. M., Bessa B. H. R., et al. Characterization of ornamental stones wastes for use in ceramic materials. Materials Science Forum. 2019;958:129–134. https://doi.org/10.4028/www. scientific.net/MSF.958.129

11. Xavier G. C., Azevedo A. R. G., Alexandre J., et al. Determination of useful life of red ceramic parts incorporated with ornamental stone waste. Journal of Materials in Civil Engineering. 2019;31(2). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002590

12. Munir M. J., Kazmi S. M. S., Wu Y.-F., et al. Thermally efficient fired clay bricks incorporating waste marble sludge: An industrial-scale study. Journal of Cleaner Production. 2018;174:1122–1135. https://doi.org/10.1016/j.jclepro.2017.11.060

13. Ahmad S., Shah M. U. H., Ullah A., at el. Sustainable use of marble waste in industrial production of fired clay bricks and its employment for treatment of flue gases. ACS Omega. 2021;6:22559−22569. https://doi.org/10.1021/acsomega.1c02279

14. Soltan A. M., Taman Z., El-Kaliouby B. Recycling of ornamental stones hazardous wastes. Natural Resources. 2011;2(4):244−249. https://doi.org/10.4236/nr.2011.24031

15. Abdelkader H. A. M., Ahmed A. S. A., Hussein M. M. A., et al. An experimental study on geotechnical properties and micro-structure of expansive soil stabilized with waste granite dust. Sustainability. 2022;14(10):6218. https://doi.org/10.3390/su14106218

16. Ibrahim H. H., Alshkane Y. M., Mawlood Y. I., at el. Improving the geotechnical properties of high expansive clay using limestone powder. Innovative Infrastructure Solutions. 2020;5(3):112. https://doi.org/10.1007/s41062-020-00366-z

17. Carvalho E. A. S., Vilela N. F., Monteiro S. N., et al. Novel artificial ornamental stone developed with quarry waste in epoxy composite. Materials Research. 2018;21(1):e20171104. https://doi.org/10.1590/19805373-MR-2017-1104

18. Silva F. S., Ribeiro C. E. G., Rodriguez R. J. S. Physical and mechanical characterization of artificial stone with marble calcite waste and epoxy resin. Materials Research. 2018;21(1). https://doi.org/10.1590/1980-5373-MR-2016-0377

19. Khudyakova L. I., Kislov E. V., Paleev P. L., Malyshev A. V. Comprehensive use of substandard nephrite. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2020;331(8):68−76. (In Russ.) https://doi.org/10.18799/24131830/2020/8/2769

20. Khudyakova L. I., Kislov E. V., Paleev P. L., Kotova I. Yu. Nephrite-bearing mining waste as a promising mineral additive in the production of new cement types. Minerals. 2020;10(5):394. https://doi.org/10.3390/min10050394

21. Liu Y., Zhang R., Zhang Zh., et al. Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite: Implications for the genesis of a magnesian skarn deposit. Lithos. 2015;212–215:128–144. https://doi.org/10.1016/j.lithos.2014.11.002

22. Zhang X., Shi G., Zhang X., Gao G. Formation of the nephrite deposit with five mineral assemblage zones in the Central Western Kunlun Mountains, China. Journal of Petrology. 2022;63(11):egac117. https://doi.org/10.1093/petrology/egac117

23. Nangeelil K., Dimpfl P., Mamtimin M., et al. Preliminary study on forgery identification of Hetian Jade with Instrumental Neutron Activation Analysis. Applied Radiation and Isotopes. 2023;191:110535. https://doi.org/10.1016/j.apradiso.2022.110535

24. Liu Y., Deng J., Shi G. H., et al. Chemical Zone of Nephrite in Alamas, Xinjiang, China. Resource Geology. 2010;60(3):249–259. https://doi.org/10.1111/j.1751-3928.2010.00135.x

25. Liu Y., Deng J., Shi G., et al. Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China. Journal of Asian Earth Sciences. 2011;42(3):440–451. https://doi.org/10.1016/j.jseaes.2011.05.012

26. Jing Y., Liu Y. Genesis and mineralogical studies of zircons in the Alamas, Yurungkash and Karakash Rivers nephrite deposits, Western Kunlun, Xinjiang, China. Ore Geology Reviews. 2022;149:105087. https://doi.org/10.1016/j.oregeorev.2022.105087

27. Liu Y., Deng J., Shi G., Sun X., Yang L. Geochemistry and petrogenesis of placer nephrite from Hetian, Xinjiang, Northwest China. Ore Geology Reviews. 2011;41(1):122–132. https://doi.org/10.1016/j.oregeorev.2011.07.004

28. Liu Y., Zhang R.-Q., Maituohuti A., et al. SHRIMP U-Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, northwest China: Implication for a Magnesium Skarn. Ore Geology Reviews. 2016;72(1):699–727. https://doi.org/10.1016/j.oregeorev.2015.08.023

29. Jiang Y., Shi G., Xu L., Li X. Mineralogy and geochemistry of nephrite jade from Yinggelike deposit, Altyn Tagh (Xinjiang, NW China). Minerals. 2020;10(5):418. https://doi.org/10.3390/min10050418

30. Liang H., Shi G., Yuan Y., et al. Polysynthetic twinning of diopsides in the Niewang and Tatliksu nephrite deposits, Xinjiang, China. Minerals. 2022;12(12):1575. https://doi.org/10.3390/min12121575

31. Gao K., Shi G., Wang M. et al. The Tashisayi nephrite deposit from South Altyn Tagh, Xinjiang, northwest China. Geoscience Frontiers. 2019;10(4):1597–1612. https://doi.org/10.1016/j.gsf.2018.10.008

32. Liu X., Gil G., Liu Y. Timing of formation and cause of coloration of brown nephrite from the Tiantai Deposit, South Altyn Tagh, northwestern China. Ore Geology Reviews. 2021;131:103972. https://doi.org/10.1016/j.oregeorev.2020.103972

33. Yu H. Y., Wang R. C., Guo J. C., et al. Color-inducing elements and mechanisms in nephrites from Golmud, Qinghai, NW China: Insights from spectroscopic and compositional analyses. Journal of Mineralogical and Petrological Sciences. 2016;111(5):313–325. https://doi.org/10.2465/jmps.151103

34. Yu H. Y., Wang R. C., Guo J. C., et al. Study of the minerogenetic mechanism and origin of Qinghai nephrite from Golmud, Qinghai, Northwest China. Science China Earth Sciences. 2016;59:1597–1609. https://doi.org/10.1007/s11430-015-0231-8

35. Gao S., Bai F., Heide G. Mineralogy, geochemistry and petrogenesis of nephrite from Tieli, China. Ore Geology Reviews. 2019;107:155–171. https://doi.org/10.1016/j.oregeorev.2019.02.016

36. Xu H., Bai F. Origin of the subduction-related Tieli nephrite deposit in Northeast China: Constraints from halogens, trace elements, and Sr isotopes in apatite group minerals. Ore Geology Reviews. 2022;142:104702. https://doi.org/10.1016/j.oregeorev.2022.10470

37. Xu H., Bai F., Jiang D. Geochemical characteristics and composition changes of tremolite at various stages in the mineralization process of nephrite from Tieli, Heilongjiang, Northeastern China. Arabian Journal of Geosciences. 2021;14:204. https://doi.org/10.1007/s12517-021-06578-6

38. Bai F., Li G., Lei J., Sun J. Mineralogy, geochemistry, and petrogenesis of nephrite from Panshi, Jilin, Northeast China. Ore Geology Reviews. 2019;115:103171. https://doi.org/10.1016/j.oregeorev.2019.103171

39. Zhang C., Yu X., Jiang T. Mineral association and graphite inclusions in nephrite jade from Liaoning, northeast China: Implications for metamorphic conditions and ore genesis. Geoscience Frontiers. 2019;10(2):425–437. https://doi.org/10.1016/j.gsf.2018.02.009

40. Zheng F., Liu Y., Zhang H.-Q. The petrogeochemistry and zircon U-Pb age of nephrite placer deposit in Xiuyan, Liaoning. Rock and Mineral Analysis. 2019;38(4):438–448. (In Chinese). https://doi.org/10.15898/j.cnki.l1-2131/td.201807310089

41. Li P., Liao Z., Zhou Zh., Wu Q. Evidences from infrared and Raman spectra: Xiaomeiling is one reasonable provenance of nephrite materials used in Liangzhu Culture. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021;261:120012. https://doi.org/10.1016/j.saa.2021.120012

42. Li P., Liao Z., Zhou Zh. The residual geological information in Liangzhu jades: Implications for their provenance. Proceedings of the Geologists’ Association. 2022;133(3):256–268. https://doi.org/10.1016/j.pgeola.2022.04.003

43. Chen D., Yang Y., Qiao B., et al. Integrated interpretation of pXRF data on ancient nephrite artifacts excavated from Tomb No. 1 in Yuehe Town, Henan Province, China. Heritage Science. 2022;10:1. https://doi.org/10.1186/s40494-021-00642-w

44. Ling X.-X., Schmädicke E., Li Q.-L., et al. Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite: A case study of the nephrite deposit from Luanchuan, Henan, China. Lithos. 2015;220–223:289–299. https://doi.org/10.1016/j.lithos.2015.02.019

45. Bai B., Du J., Li J., Jiang B. Mineralogy, geochemistry, and petrogenesis of green nephrite from Dahua, Guangxi, Southern China. Ore Geology Reviews. 2020;118:103362. https://doi.org/10.1016/j.oregeorev.2020.103362

46. Yin Z., Jiang C., Santosh M., et al. Nephrite jade from Guangxi province, China. Gems and Gemology. 2014;50(3):228–235. https://doi.org/10.5741/GEMS.50.3.228

47. Zhong Q., Liao Z., Qi L., Zhou Zh. Black nephrite jade from Guangxi, Southern China. Gems and Gemology. 2019;55(2):198–215. https://doi.org/10.5741/GEMS.55.2.198

48. Wang W., Liao Z., Zhou Z., et al. Gemmological and mineralogical characteristics of nephrite from Longxi, Sichuang Province. Journal of Gems & Gemmology. 2022;24(1):20–27. (In Chinese). https://doi.org/10.15964/j.cnki.027jgg. 2022.01.003

49. Wang L., Lin J. H., Ye T. P., et al. Discussing the coloration mechanism of Luodian Jade from Guizhou. Open Access Library Journal. 2020;7:e6364. https://doi.org/10.4236/oalib.1106364

50. Feng Y., He X., Jing Y. A new model for the formation of nephrite deposits: A case study of the Chuncheon nephrite deposit, South Korea. Ore Geology Reviews. 2022;141:104655. https://doi.org/10.1016/j.oregeorev.2021.104655

51. Yui T.-F., Kwon S.-T. Origin of a dolomite-related jade deposit at Chuncheon, Korea. Economic Geology. 2002;97(3):593–601. https://doi.org/10.2113/gsecongeo.97.3.593

52. Nichol D. Two contrasting nephrite jade types. The Journal of Gemmology. 2000;27(4):193–200.

53. Tan T. L., Ng N. N., Lim N. C. Studies on nephrite and jadeite jades by Fourier transform infarred (FTIR) and Raman spectroscopic techniques. Cosmos. 2013;9(1):47–56. https://doi.org/10.1142/S0219607713500031

54. Adamo I., Bocchio R. Nephrite jade from Val Malenco, Italy: Review and Update. Gems and Gemology. 2013;49(2):98–106. https://doi.org/10.5741/GEMS.49.2.98

55. Korybska-Sadło I., Gil G., Gunia P., et al. Raman and FTIR spectra of nephrites from the Złoty Stok and Jordanów Śląski (the Sudetes and Fore-Sudetic Block, SW Poland). Journal of Molecular Structure. 2018;1166:40–47. https://doi.org/10.1016/j.molstruc.2018.04.020

56. Gil G., Barnes J. D., Boschi C. Nephrite from Złoty stok (Sudetes, SW Poland): petrological, geochemical, and isotopic evidence for a dolomite-related origin. The Canadian Mineralogist. 2015;53:533–556. https://doi.org/10.3749/canmin.1500018

57. Gil G., Bagiński B., Gunia P., et al. Comparative Fe and Sr isotope study of nephrite deposits hosted in dolomitic marbles and serpentinites from the Sudetes, SW Poland: Implications for Fe-As-Aubearing skarn formation and post-obduction evolution of the oceanic lithosphere. Ore Geology Reviews. 2020;118:103335. https://doi.org/10.1016/j.oregeorev.2020.103335

58. Platonov A. N., Taran M. N., Balitsky V. S. The nature of the color of gems. Moscow: Nedra Publ. House; 1984. 196 p. (In Russ.)

59. Sviridov D. T., Sviridova R. K., Smirnov Yu. F. Optical spectra of transition metal ions in crystals. Moscow: Nauka Publ. House; 1976. 266 p. (In Russ.)


Review

For citations:


Kislov E.V., Khudyakova L.I., Nikolaev A.G. Dolomite type nephrite processing wastes and their application. Mining Science and Technology (Russia). 2023;8(3):195-206. https://doi.org/10.17073/2500-0632-2023-01-75

Views: 663


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0632 (Online)