Preview

Gornye nauki i tekhnologii = Mining Science and Technology (Russia)

Advanced search

Modern approach to geological-and-metallurgical mapping of ore deposits

https://doi.org/10.17073/2500-0632-2017-1-23-29

Abstract

Geological-and-metallurgical mapping is carried out during operational exploration of a deposit for controlling grade of ore fed for processing. The paper is devoted to studying the main approaches to metallurgical assessment of ore deposits based on the methods of geological-and-metallurgical mapping and modeling. The relevance and necessity of conducting geological-and-metallurgical research programs at different stages of deposit exploration was confirmed. The main low-volume sample studying methods for determining key parameters of ores that directly affect on the efficiency of each stage of ore processing for assessing spatial variability of the parameters are shown. The proposed approach to geological-and-metallurgical modeling allows solving a number of problems, including: assessing ores across the entire range of knowledge (but not solely based on useful component grades); understanding the ore material composition and grade variability; estimating ore reserves with differentiation by ore type and grade. 

About the Authors

M. A. Kozlova
MIPT Center for Engineering and Technology
Russian Federation

Senior Engine, Department of Ore Minerals.

141700, Russia, Dolgoprudny, Pervomayskaya Street



D. A. Ryabtsev
MIPT Center for Engineering and Technology
Russian Federation

Head of Department of Ore Minerals, expert of Scientific Research Institute – Federal Research Centre for Projects Evaluation and Consulting Services (SRI FRCEC).

141700, Russia, Dolgoprudny, Pervomayskaya Street.



References

1. Ershov V.V. Osnovy gornopromyshlennoi geologii. – M.: Nedra, 1988. – 325 s.

2. Maloob"emnoe tekhnologicheskoe oprobovanie i kartirovanie rudnykh mestorozhdenii pri razvedke. Instruktsiya NSOMTI №1. M.: VIMS. 1979. 47 s.

3. Standart Rossiiskogo Geologicheskogo obshchestva. Tverdye poleznye iskopaemye i gornye porody. Geologo-tekhnologicheskoe kartirovanie. Metody. STO RosGeo 09-002-98. RosGeo. Moskva. 1998.

4. Standart Rossiiskogo Geologicheskogo obshchestva. Tverdye poleznye iskopaemye i gornye porody. Tekhnologicheskoe oprobovanie v protsesse geologorazvedochnykh rabot. Obshchie trebovaniya. STO RosGeo 09-001-98. RosGeo. Moskva. 1998.

5. Tekhnologicheskaya otsenka mineral'nogo syr'ya. Oprobovanie mestorozhdenii. Kharakteristika syr'ya. Spravochnik. Pod red. P.E. Ostapenko. M.: Nedra. 1990. 272 s.

6. Kots G.A., Chernopyatov S.F., Shmanenkov I.V. Tekhnologicheskoe oprobovanie i kartirovanie mestorozhdenii. M.: Nedra. 1980. 288 s.

7. Bashlykova T. V., Pakhomova G. A., Lagov B. S. i dr. Tekhnologicheskie aspekty ratsional'nogo nedropol'zovaniya: rol' tekhnologicheskoi otsenki v razvitii i upravlenii mineral'no-syr'evoi bazoi strany / pod nauch. red. Yu. S. Karabasova. — M.: MISiS, 2015. —576 s.

8. Ispytanie na opredelenie indeksa moshchnosti mel'nitsy polusamoizmel'cheniya (SPI). URL: http://www.sgs.ru/ru-RU/Mining/Metallurgy-and-Process-Design/Unit-Operations-andMetallurgical-Services/Comminution-and-Beneficiation/SAG-Power-Index-SPI-Test.aspx (data obrashcheniya: 29.09.2016).

9. Hunt R., Kojovic J., Berry T. Estimating comminution indices from ore mineralogy, chemistry and drill core logging. Conference Paper. GeoMet 2013: The Second AusIMM International Geometallurgy Conference. Carlton, VIC, Australia, 2013 г.

10. Samorodskii P.N. Issledovanie vnutrennego stroeniya obraztsov rud zolota nerazrushayushchim metodom rentgenovskoi vychislitel'noi mikrotomografii: Avtoref. dis. k-ta geol.-min. nauk. - Moskva: VNIIgeosistem, 2004. – 28 s.

11. Chetty D., Clark W., Bushell C. etc. The use of 3d x-ray computed tomography for gold location in exploration drill cores. Proceedings, 10th International Congress for Applied Mineralogy (ICAM), 1-5 August 2011, TRONDHEIM, Norway

12. Dominy S., Xie Y., O’Connor L. Characterisation of gold from the Nick O'Time shoot (Tarnagulla, Australia) using highresolution X-ray computed tomography. URL:https://www.researchgate.net/publication/303700778 (дата обращения: 14.11.16)

13. Development of the mineralogical path for geometallurgical modeling of iron ores. Mehdi Parian. Licentiate Thesis in Mineral Processing Division of Minerals and Metallurgical Engineering Luleå University of Technology SE-971 87 LULEÅ Sweden, 2015. URL:http://pure.ltu.se/portal/files/102298043/Mehdi_Parian.pdf (data obrashcheniya: 07.10.16)

14. The geometallurgical framework. Malmberget and Mikheevskoye case studies. V. Lishchuk, P.H. Koch, C. Lund, P. Lamberg. Mining Science, vol. 22, 2015, стр. 57−66

15. Lamberg P. Particles – the bridge between geology and metallurgy. URL:https://pure.ltu.se/portal/files/32756151/Particles_The_Bridge_Between_Geology_and_Metallurgy.pdf (data obrashcheniya: 29.09.2016).


Review

For citations:


Kozlova M.A., Ryabtsev D.A. Modern approach to geological-and-metallurgical mapping of ore deposits. Gornye nauki i tekhnologii = Mining Science and Technology (Russia). 2017;(1):23-30. (In Russ.) https://doi.org/10.17073/2500-0632-2017-1-23-29

Views: 1334


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0632 (Online)